Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines
暂无分享,去创建一个
Tom Lyche | Hendrik Speleers | Carla Manni | Fabio Roman | Cesare Bracco | T. Lyche | H. Speleers | C. Manni | Cesare Bracco | F. Roman
[1] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[2] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[3] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[4] Falai Chen,et al. On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..
[5] Bernard Mourrain,et al. On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..
[6] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[7] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[8] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[9] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[10] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[11] Fabio Roman,et al. Spaces of generalized splines over T-meshes , 2014, J. Comput. Appl. Math..
[12] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[13] R. Ho. Algebraic Topology , 2022 .
[14] Hendrik Speleers,et al. Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.
[15] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[16] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[17] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[18] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[19] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[20] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[21] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[22] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[23] Guozhao Wang,et al. NUAT B-spline curves , 2004, Comput. Aided Geom. Des..
[24] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[25] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[26] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[27] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[28] Paolo Costantini,et al. Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..
[29] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[30] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[31] L. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .
[32] Larry L. Schumaker,et al. On Hermite interpolation with polynomial splines on T-meshes , 2013, J. Comput. Appl. Math..
[33] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[34] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[35] Durkbin Cho,et al. Generalized T-splines and VMCR T-meshes , 2014, 1401.6319.
[36] Tom Lyche,et al. Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.
[37] Dmitry Berdinsky,et al. Trigonometric generalized T-splines , 2014 .