Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines

Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider generalized spline spaces over planar T-meshes, and we deepen their parallelism with polynomial spline spaces over the same partitions. First, we extend the homological approach from polynomial to generalized splines. This provides some new insights into the dimension problem of a generalized spline space defined on a prescribed T-mesh for a given degree and smoothness. Second, we extend the construction of LR-splines to the generalized spline context.

[1]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[2]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[3]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[4]  Falai Chen,et al.  On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..

[5]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[6]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[7]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[8]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[9]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[10]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[11]  Fabio Roman,et al.  Spaces of generalized splines over T-meshes , 2014, J. Comput. Appl. Math..

[12]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[13]  R. Ho Algebraic Topology , 2022 .

[14]  Hendrik Speleers,et al.  Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.

[15]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[16]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[17]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[20]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[21]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[22]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[23]  Guozhao Wang,et al.  NUAT B-spline curves , 2004, Comput. Aided Geom. Des..

[24]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[25]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[26]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[27]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[28]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[29]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[30]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[31]  L. Billera Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .

[32]  Larry L. Schumaker,et al.  On Hermite interpolation with polynomial splines on T-meshes , 2013, J. Comput. Appl. Math..

[33]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[34]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[35]  Durkbin Cho,et al.  Generalized T-splines and VMCR T-meshes , 2014, 1401.6319.

[36]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[37]  Dmitry Berdinsky,et al.  Trigonometric generalized T-splines , 2014 .