Multicriteria Similarity-Based Anomaly Detection Using Pareto Depth Analysis
暂无分享,去创建一个
[1] Zhi-Hua Zhou,et al. On Detecting Clustered Anomalies Using SCiForest , 2010, ECML/PKDD.
[2] Mikkel T. Jensen,et al. Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..
[3] Vipin Kumar,et al. Similarity Measures for Categorical Data: A Comparative Evaluation , 2008, SDM.
[4] Victoria J. Hodge,et al. A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.
[5] Clara Pizzuti,et al. Fast Outlier Detection in High Dimensional Spaces , 2002, PKDD.
[6] Donald Kossmann,et al. The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.
[7] Salvatore J. Stolfo,et al. A Geometric Framework for Unsupervised Anomaly Detection , 2002, Applications of Data Mining in Computer Security.
[8] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[9] Hsien-Kuei Hwang,et al. Multivariate Records Based on Dominance , 2010, 1003.6119.
[10] Alfred O. Hero,et al. Efficient anomaly detection using bipartite k-NN graphs , 2011, NIPS.
[11] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[12] Ethem Alpaydin,et al. Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..
[13] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[14] Alfred O. Hero,et al. Pareto-Optimal Methods for Gene Ranking , 2004, J. VLSI Signal Process..
[15] Eleazar Eskin,et al. A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .
[16] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[17] O. Barndorfi-nielsen,et al. On the distribution of the number of admissible points in a vector , 1966 .
[18] Hsien-Kuei Hwang,et al. Maxima in hypercubes , 2005, Random Struct. Algorithms.
[19] Marc Parizeau,et al. Generalizing the improved run-time complexity algorithm for non-dominated sorting , 2013, GECCO '13.
[20] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[21] Beng Chin Ooi,et al. Efficient Progressive Skyline Computation , 2001, VLDB.
[22] E. Polak,et al. On Multicriteria Optimization , 1976 .
[23] Joseph E. Yukich,et al. Maximal Points and Gaussian Fields , 2005 .
[24] Bernhard Sendhoff,et al. Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[25] Maya R. Gupta,et al. Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..
[26] Venkatesh Saligrama,et al. Anomaly Detection with Score functions based on Nearest Neighbor Graphs , 2009, NIPS.
[27] A. Raftery,et al. Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .
[28] Mikhail Belkin,et al. A Co-Regularization Approach to Semi-supervised Learning with Multiple Views , 2005 .
[29] Trevor Darrell,et al. Multi-View Learning in the Presence of View Disagreement , 2008, UAI 2008.
[30] Alfred O. Hero,et al. Multi-criteria Anomaly Detection using Pareto Depth Analysis , 2011, NIPS.
[31] Alfred O. Hero,et al. Geometric entropy minimization (GEM) for anomaly detection and localization , 2006, NIPS.
[32] Zhi-Hua Zhou,et al. Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[33] Alfred O. Hero,et al. A PDE-based Approach to Nondominated Sorting , 2013, SIAM J. Numer. Anal..
[34] Barbara Majecka,et al. Statistical models of pedestrian behaviour in the Forum , 2009 .
[35] Avrim Blum,et al. The Bottleneck , 2021, Monopsony Capitalism.
[36] V. M. Ivanin. Asymptotic estimate for the mathematical expectation of the number of elements in the Pareto set , 1975 .
[37] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.
[38] Shane S. Sturrock,et al. Time Warps, String Edits, and Macromolecules – The Theory and Practice of Sequence Comparison . David Sankoff and Joseph Kruskal. ISBN 1-57586-217-4. Price £13.95 (US$22·95). , 2000 .