Automata Theory Based on Quantum Logic II

We establish the pumping lemma in automata theory based on quantum logicunder certain conditions on implication, and discuss the recognizability by theproduct and union of orthomodular lattice-valued (quantum) automata. Inparticular, we show that the equivalence between the recognizabilty by the productof automata and the conjunction of the recognizabilities by the factor automatais equivalent to the distributivity of meet over union in the truth-value set.

[1]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[2]  Mingsheng Ying,et al.  Deduction Theorem for Many-Valued Inference , 1991, Math. Log. Q..

[3]  M. Ying A new approach for fuzzy topology (II) , 1991 .

[4]  Mingsheng Ying,et al.  A logic for approximate reasoning , 1994, Journal of Symbolic Logic.

[5]  R. Feynman Simulating physics with computers , 1999 .

[6]  L. Román,et al.  Quantum logic revisited , 1991 .

[7]  Mingsheng Ying Compactness, the LöWenheim-Skolem Property and the Direct Product of Lattices of Truth Values , 1992, Math. Log. Q..

[8]  Mingsheng Ying The Fundamental Theorem of Ultraproduct in Pavelka's Logic , 1992, Math. Log. Q..

[9]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[10]  Mingsheng Ying,et al.  Fuzzifying topology based on complete residuated lattice-valued logic (I) , 1993 .

[11]  R. Feynman Quantum mechanical computers , 1986 .

[12]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[15]  Atwell R. Turquette,et al.  On the Many-Valued Logics , 1941 .

[16]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[17]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.