Principles of crop modelling and simulation: II. the implications of the objective in model development

With the purpose of presenting to scientists the implications of the objective in model development and a basic vision of modeling, with its potential applications and limitations in agriculture, an integration of crop modeling professionals with agricultural professionals is suggested. Models mean modernization of the information, of the measurement process and of an efficient way to learn more about complex systems. They are one of the best mechanisms of transforming information in useful knowledge and of transferring this knowledge to others. One of the problems that impede a larger progress in modeling is the lack of communication between modelers and a frequent appearance of modelers without a global vision of reality.

[1]  Valter Barbieri,et al.  Condicionamento climatico da produtividade potencial da cana-de-acucar (saccharum spp.): um modelo matematico-fisiologico de estimativa , 1993 .

[2]  F. D. Vries Systems analysis and models of crop growth , 1982 .

[3]  Basil Acock,et al.  Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models , 1985 .

[4]  Jen-Yu Wang,et al.  A Critique of the Heat Unit Approach to Plant Response Studies , 1960 .

[5]  Glyn M. Rimmington,et al.  Mathematical descriptions of plant growth and development. , 1987 .

[6]  R. M. Peart,et al.  Simulation in Crop Ecosystem Management , 1976 .

[7]  H. Simon,et al.  Scientific Discovery and the Psychology of Problem Solving , 1977 .

[8]  J. Doorenbos,et al.  Yield response to water , 1979 .

[9]  H. Nix,et al.  The climatic factor in Australian grassland ecology , 1970 .

[10]  C. H. Baker,et al.  Simulation of Reproductive Processes and Senescence in Indeterminate Soybeans , 1981 .

[11]  D A Holt Computers in Production Agriculture , 1985, Science.

[12]  J. G. Streeter,et al.  SOYMOD OARDC: a dynamic simulator of soybean growth, development, and seed yield. I. Theory, structure, and validation , 1979 .

[13]  Andrew Paul Gutierrez,et al.  A Perspective on Systems Analysis in Crop Production and Insect Pest Management , 1982 .

[14]  E. C. Machado,et al.  Um simulador dinâmico do crescimento de uma cultura de cana-de-açúcar , 1986 .

[15]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[16]  C. T. de Wit Coordination of models , 1982 .

[17]  J. Thornley Research strategy in the plant sciences. , 1980 .

[18]  R. N. Kickert,et al.  Applied plant growth models for grazinglands, forests, and crops. , 1987 .

[19]  Leo Stroosnijder,et al.  Simulation of the soil water balance , 1982 .

[20]  F.W.T. Penning de Vries,et al.  Simulation of plant growth and crop production. , 1983 .

[21]  D. A. Teruel Modelagem do índice de área foliar da cana-de-açúcar em diferentes regimes hídricos , 1996 .