THE ROLE OF THE CENTRAL COMPLEX IN ADAPTIVE LOCOMOTOR BEHAVIOR IN COCKROACHES

[1]  K. D. Roeder The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.) , 1937 .

[2]  G. M. Hughes The Co-Ordination of Insect Movements I The Walking Movements of Insects , 1952 .

[3]  G. M. Hughes The Co-Ordination of Insect Movements , 1958 .

[4]  F. Delcomyn The Locomotion of the Cockroach Periplaneta Americana , 1971 .

[5]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[6]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[7]  A. Miller Neuroanatomical Techniques , 1980, Springer Series in Experimental Entomology.

[8]  K. Pearson,et al.  Phase-dependent influences of wing stretch receptors on flight rhythm in the locust. , 1983, Journal of neurophysiology.

[9]  A. J. Pollack,et al.  Wind-activated thoracic interneurons of the cockroach: II. Patterns of connection from ventral giant interneurons. , 1988, Journal of neurobiology.

[10]  U. Bässler Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences , 1988 .

[11]  R. Full,et al.  Mechanics of six-legged runners. , 1990, The Journal of experimental biology.

[12]  A. J. Pollack,et al.  Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana. , 1990, Journal of neurobiology.

[13]  R. Full,et al.  Mechanics of a rapid running insect: two-, four- and six-legged locomotion. , 1991, The Journal of experimental biology.

[14]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[15]  K. Pearson,et al.  Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. , 1993, Journal of neurophysiology.

[16]  R. Ritzmann The neural organization of cockroach escape and its role in context-dependent orientation , 1993 .

[17]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  R. Blickhan,et al.  Dynamic and static stability in hexapedal runners. , 1994, The Journal of experimental biology.

[19]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  K. Pearson Proprioceptive regulation of locomotion , 1995, Current Opinion in Neurobiology.

[21]  J. Schmitz,et al.  Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine , 1995, The Journal of experimental biology.

[22]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[23]  A. Büschges,et al.  Sensorimotor pathways involved in interjoint reflex action of an insect leg. , 1997, Journal of neurobiology.

[24]  Uwe Homberg,et al.  Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria) , 1997, Cell and Tissue Research.

[25]  J. T. Watson,et al.  Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running , 1997, Journal of Comparative Physiology A.

[26]  E. Staudacher,et al.  Gating of sensory responses of descending brain neurones during walking in crickets , 1998 .

[27]  M. Heisenberg,et al.  Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster , 1999, Journal of Comparative Physiology A.

[28]  A. Büschges,et al.  Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. , 1999, Journal of neurophysiology.

[29]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[30]  A I Selverston,et al.  Neuronal mechanisms for the control of body orientation in Clione I. Spatial zones of activity of different neuron groups. , 1999, Journal of neurophysiology.

[31]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[32]  A K Tryba,et al.  Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms. , 2000, Journal of neurophysiology.

[33]  J. Camhi,et al.  Population Vector Coding by the Giant Interneurons of the Cockroach , 2000, The Journal of Neuroscience.

[34]  J. Okada,et al.  The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana) , 2000, Journal of Comparative Physiology A.

[35]  R. Levi,et al.  Wind Direction Coding in the Cockroach Escape Response: Winner Does Not Take All , 2000, The Journal of Neuroscience.

[36]  K G Pearson,et al.  Neural adaptation in the generation of rhythmic behavior. , 2000, Annual review of physiology.

[37]  R. Strauss,et al.  Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. , 2001, Journal of neurobiology.

[38]  S. Zill,et al.  Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered , 2001, Journal of Comparative Physiology A.

[39]  U. Bässler,et al.  The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. , 2001, Journal of neurophysiology.

[40]  R. Ritzmann,et al.  Descending influences on escape behavior and motor pattern in the cockroach. , 2001, Journal of neurobiology.

[41]  N. Elsner,et al.  Pharmacological brain stimulation releases elaborate stridulatory behaviour in gomphocerine grasshoppers – conclusions for the organization of the central nervous control , 2001, Journal of Comparative Physiology A.

[42]  A Büschges,et al.  A central pattern-generating network contributes to "reflex-reversal"-like leg motoneuron activity in the locust. , 2001, Journal of neurophysiology.

[43]  Roy E. Ritzmann,et al.  Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics , 2002, Journal of Comparative Physiology A.

[44]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[45]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[46]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[47]  Dirk Bucher,et al.  Interjoint coordination in the stick insect leg-control system: the role of positional signaling. , 2003, Journal of neurophysiology.

[48]  C. Comer,et al.  The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions , 2003, Journal of Comparative Physiology A.

[49]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[50]  H. Cruse,et al.  Mechanisms of stick insect locomotion in a gap-crossing paradigm , 2004, Journal of Comparative Physiology A.

[51]  C. M. Comer,et al.  The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response , 2003, Journal of Comparative Physiology A.

[52]  Franz Huber,et al.  Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.

[53]  U. Homberg,et al.  Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.

[54]  Roger D. Quinn,et al.  Descending control of body attitude in the cockroach Blaberus discoidalis and its role in incline climbing , 2004, Journal of Comparative Physiology A.

[55]  U. Bässler Afferent control of walking movements in the stick insectCuniculina impigra , 2004, Journal of Comparative Physiology A.

[56]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[57]  H. Cruse,et al.  Stick insect locomotion in a complex environment: climbing over large gaps , 2004, Journal of Experimental Biology.

[58]  J. Schmitz,et al.  Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. , 2004, Journal of neurophysiology.

[59]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[60]  B. Smith,et al.  Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. , 2004, Journal of neurophysiology.

[61]  J. Schmitz,et al.  Load sensing and control of posture and locomotion. , 2004, Arthropod structure & development.

[62]  H. Cruse The function of the legs in the free walking stick insect,Carausius morosus , 1976, Journal of comparative physiology.

[63]  O. Breidbach,et al.  Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor , 1992, Cell and Tissue Research.

[64]  D. Graham A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus) , 1972, Journal of comparative physiology.

[65]  R. Strauss,et al.  Goal-Driven Behavioral Adaptations in Gap-Climbing Drosophila , 2005, Current Biology.

[66]  A. Büschges Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. , 2005, Journal of neurophysiology.

[67]  R. Ritzmann,et al.  Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach , 2005, Journal of Comparative Physiology A.

[68]  V. Dürr,et al.  Antennal movements and mechanoreception: neurobiology of active tactile sensors , 2005 .

[69]  V. Dürr,et al.  The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning , 2005, Journal of Experimental Biology.

[70]  S. Grillner,et al.  Mechanisms for selection of basic motor programs – roles for the striatum and pallidum , 2005, Trends in Neurosciences.

[71]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[72]  Trevor Drew,et al.  Motor cortical modulation of cutaneous reflex responses in the hindlimb of the intact cat. , 2005, Journal of neurophysiology.

[73]  R. Ritzmann,et al.  Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis , 2005, Journal of Comparative Physiology A.

[74]  Jiro Okada,et al.  Active tactile sensing for localization of objects by the cockroach antenna , 2006, Journal of Comparative Physiology A.

[75]  Frederic Libersat,et al.  New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia , 2006, Journal of Comparative Physiology A.

[76]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[77]  U. Homberg,et al.  Neuropeptides in interneurons of the insect brain , 2006, Cell and Tissue Research.

[78]  Ansgar Büschges,et al.  Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. , 2006, Journal of neurophysiology.

[79]  U. Homberg,et al.  Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria , 2006, Journal of Comparative Physiology A.

[80]  R. Ritzmann,et al.  Descending control of turning behavior in the cockroach, Blaberus discoidalis , 2007, Journal of Comparative Physiology A.

[81]  A. J. Pollack,et al.  Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis , 2008, Journal of Comparative Physiology A.

[82]  R. Ritzmann,et al.  Interaction between descending input and thoracic reflexes for joint coordination in cockroach. II Comparative studies on tethered turning and searching , 2008, Journal of Comparative Physiology A.

[83]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[84]  Ansgar Büschges,et al.  Adaptive motor behavior in insects , 2007, Current Opinion in Neurobiology.

[85]  A. Büschges,et al.  Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. , 2007, Journal of neurophysiology.

[86]  J. Schmitz,et al.  Segment Specificity of Load Signal Processing Depends on Walking Direction in the Stick Insect Leg Muscle Control System , 2007, The Journal of Neuroscience.

[87]  Ansgar Büschges,et al.  Organizing network action for locomotion: Insights from studying insect walking , 2008, Brain Research Reviews.

[88]  Uwe Homberg,et al.  Evolution of the central complex in the arthropod brain with respect to the visual system. , 2008, Arthropod structure & development.

[89]  A. Büschges,et al.  Activity of neuromodulatory neurones during stepping of a single insect leg. , 2008, Journal of insect physiology.

[90]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[91]  Dimitrios Lambrinos,et al.  Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. , 2008, Journal of neurophysiology.

[92]  R E Ritzmann,et al.  Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis , 2009, Journal of Experimental Biology.

[93]  Frederic Libersat,et al.  Manipulation of host behavior by parasitic insects and insect parasites. , 2009, Annual review of entomology.

[94]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[95]  Michael H. Dickinson,et al.  Motmot, an open-source toolkit for realtime video acquisition and analysis , 2009, Source Code for Biology and Medicine.

[96]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[97]  A. Büschges,et al.  Straight walking and turning on a slippery surface , 2009, Journal of Experimental Biology.

[98]  A. Büschges,et al.  Sensory Feedback Induced by Front-Leg Stepping Entrains the Activity of Central Pattern Generators in Caudal Segments of the Stick Insect Walking System , 2009, The Journal of Neuroscience.

[99]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[100]  S. Laughlin,et al.  Visual Targeting of Forelimbs in Ladder-Walking Locusts , 2010, Current Biology.

[101]  A. J. Pollack,et al.  Neural Activity in the Central Complex of the Insect Brain Is Linked to Locomotor Changes , 2010, Current Biology.

[102]  Roland Strauss,et al.  Visual Targeting of Motor Actions in Climbing Drosophila , 2010, Current Biology.

[103]  S. Rauser,et al.  Developmental expression of neuromodulators in the central complex of the grasshopper Schistocerca gregaria , 2010, Journal of morphology.

[104]  Jean-René Martin,et al.  Neuropeptides in the Drosophila central complex in modulation of locomotor behavior , 2010, Journal of Experimental Biology.

[105]  Christian Berg,et al.  The central control of oriented locomotion in insects - towards a neurobiological model , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[106]  H. Bergman,et al.  Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease , 2010, Nature Reviews Neuroscience.

[107]  R E Ritzmann,et al.  Electrolytic lesions within central complex neuropils of the cockroach brain affect negotiation of barriers , 2010, Journal of Experimental Biology.

[108]  V. Jayaraman,et al.  Studying sensorimotor integration in insects , 2011, Current Opinion in Neurobiology.

[109]  L. Kahsai,et al.  Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters , 2011, The Journal of comparative neurology.

[110]  Reid R. Harrison,et al.  Wireless Neural/EMG Telemetry Systems for Small Freely Moving Animals , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[111]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[112]  V. Dürr,et al.  Active tactile exploration for adaptive locomotion in the stick insect , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[113]  M. Takahata,et al.  Sequential Synaptic Excitation and Inhibition Shape Readiness Discharge for Voluntary Behavior , 2011, Science.

[114]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[115]  Brian R. Tietz,et al.  Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis , 2011, Journal of Experimental Biology.

[116]  Origin of descending inputs controlling reflex reversals in the cockroach (Blaberus discoidalis) , 2012 .

[117]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[118]  A. Büschges,et al.  Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning. , 2012, Journal of neurophysiology.

[119]  Brian R. Tietz,et al.  Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers? , 2012, Front. Neurosci..

[120]  James Phillips-Portillo,et al.  The central complex of the flesh fly, Neobellieria bullata: Recordings and morphologies of protocerebral inputs and small‐field neurons , 2012, The Journal of comparative neurology.

[121]  M. Carlsson,et al.  Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila , 2012, Neuroscience.

[122]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[123]  R. Ritzmann,et al.  Neural activity in the central complex of the cockroach brain is linked to turning behaviors , 2013, Journal of Experimental Biology.

[124]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.