Electronic origins of photocatalytic activity in d0 metal organic frameworks

[1]  M. A. van der Veen,et al.  Organic Linker Defines the Excited-State Decay of Photocatalytic MIL-125(Ti)-Type Materials. , 2016, ChemSusChem.

[2]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[3]  Christopher H. Hendon,et al.  Chemical principles underpinning the performance of the metal–organic framework HKUST-1 , 2015, Chemical science.

[4]  Seth M. Cohen,et al.  Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. , 2015, Chemical communications.

[5]  Z. Li,et al.  Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). , 2015, Chemical communications.

[6]  F. Kapteijn,et al.  Correction: Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2015, Chemical Communications.

[7]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[8]  F. Kapteijn,et al.  Co@NH2-MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H2 production , 2015 .

[9]  F. Kapteijn,et al.  Adsorptive characterization of porous solids: Error analysis guides the way , 2014 .

[10]  Aron Walsh,et al.  Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices , 2014, ACS applied materials & interfaces.

[11]  Wenbin Lin,et al.  Metal—Organic Frameworks for Artificial Photosynthesis and Photocatalysis , 2014 .

[12]  Jian‐Rong Li,et al.  Photocatalytic organic pollutants degradation in metal–organic frameworks , 2014 .

[13]  Sachin Chavan,et al.  Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66 , 2014 .

[14]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[15]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[16]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[17]  F. Kapteijn,et al.  NH 2-MIL-125 ( Ti ) : Cobaloxime-derived Metal-Organic Framework-based Composite for Light-driven H 2 Production , 2014 .

[18]  R. Lobo Microporous and Mesoporous Materials , 2014 .

[19]  Freek Kapteijn,et al.  Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2013, Chemical communications.

[20]  Lin Yang,et al.  Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. , 2013, Chemistry.

[21]  Michael J. Katz,et al.  A facile synthesis of UiO-66, UiO-67 and their derivatives. , 2013, Chemical communications.

[22]  Ling Wu,et al.  Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). , 2013, Dalton transactions.

[23]  Aron Walsh,et al.  Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. , 2013, Journal of the American Chemical Society.

[24]  Y. Horiuchi,et al.  Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst , 2013 .

[25]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[27]  Yangen Zhou,et al.  Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. , 2012, Chemical communications.

[28]  M. Bonn,et al.  Hydrogen-Bond Dynamics in a Protic Ionic Liquid: Evidence of Large-Angle Jumps. , 2012, The journal of physical chemistry letters.

[29]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[30]  M. A. Moreira,et al.  Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2 , 2012 .

[31]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[32]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[33]  A. Walsh,et al.  Photostimulated reduction processes in a titania hybrid metal-organic framework. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[35]  A. Kanaev,et al.  Laser-induced photopatterning of organic-inorganic TiO2-based hybrid materials with tunable interfacial electron transfer. , 2009, Physical chemistry chemical physics : PCCP.

[36]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[37]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[38]  H. García,et al.  Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors , 2007 .

[39]  C. Sanchez,et al.  New photoactive hybrid organic–inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties , 2005 .

[40]  Delmar S. Larsen,et al.  Erratum to “Global and target analysis of time-resolved spectra” [Biochimica et Biophysica Acta 1658/2–3 (2004) 82–104] , 2004 .

[41]  Rienk van Grondelle,et al.  Global and target analysis of time-resolved spectra. , 2004, Biochimica et biophysica acta.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .

[44]  L. Hammett,et al.  The Effect of Structure Upon the Reactions of Organic Compounds. Temperature and Solvent Influences , 1936 .