Ubiquitous Artificial Intelligence and Dynamic Data Streams

Artificial Intelligence is leading to ubiquitous sources of Big Data arriving at high-velocity and in real-time. To effectively deal with it, we need to be able to adapt to changes in the distribution of the data being produced, and we need to do it using a minimum amount of time and memory. In this paper, we detail modern applications falling into this context, and discuss some state-of-the-art methodologies in mining data streams in real-time, and the open source tools that are available to do machine learning/data mining in real-time for this challenging setting.

[1]  Geoff Holmes,et al.  CD-MOA: Change Detection Framework for Massive Online Analysis , 2013, IDA.

[2]  Gianmarco De Francisci Morales,et al.  SAMOA: scalable advanced massive online analysis , 2015, J. Mach. Learn. Res..

[3]  Michael Chui,et al.  Artificial intelligence: the next digital frontier? , 2017 .

[4]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[5]  S. Rahimifard,et al.  Unlocking the Potential of the Internet of Things to Improve Resource Efficiency in Food Supply Chains , 2017, Innovative Approaches and Applications for Sustainable Rural Development.

[6]  João Gama,et al.  Learning decision trees from dynamic data streams , 2005, SAC '05.

[7]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[8]  Talel Abdessalem,et al.  Adaptive random forests for evolving data stream classification , 2017, Machine Learning.

[9]  João Gama,et al.  Issues in evaluation of stream learning algorithms , 2009, KDD.

[10]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[11]  Geoff Holmes,et al.  Stress-Testing Hoeffding Trees , 2005, PKDD.

[12]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ricard Gavaldà,et al.  Adaptive Learning from Evolving Data Streams , 2009, IDA.

[14]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[15]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[16]  Geoff Holmes,et al.  Efficient data stream classification via probabilistic adaptive windows , 2013, SAC '13.

[17]  Talel Abdessalem,et al.  Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..

[18]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[19]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[20]  Albert Bifet,et al.  Efficient Online Evaluation of Big Data Stream Classifiers , 2015, KDD.