Adaptive reduced basis finite element heterogeneous multiscale method
暂无分享,去创建一个
Assyr Abdulle | Yun Bai | A. Abdulle | Y. Bai | Yun Bai
[1] N. Nguyen,et al. A general multipurpose interpolation procedure: the magic points , 2008 .
[2] Assyr Abdulle,et al. A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .
[3] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[4] Achim Nonnenmacher,et al. Adaptive Finite Element Methods for Multiscale Partial Differential Equations , 2011 .
[5] Ricardo H. Nochetto,et al. A safeguarded dual weighted residual method , 2008 .
[6] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[7] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[8] H. Schmid. On cubature formulae with a minimal number of knots , 1978 .
[9] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[10] J. Z. Zhu,et al. The finite element method , 1977 .
[11] A. Abdulle. ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .
[12] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[13] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[14] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .
[15] Assyr Abdulle. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..
[16] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[17] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[18] Assyr Abdulle,et al. Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..
[19] Zhiming Chen,et al. UPSCALING OF A CLASS OF NONLINEAR PARABOLIC EQUATIONS FOR THE FLOW TRANSPORT IN HETEROGENEOUS POROUS MEDIA , 2005 .
[20] Assyr Abdulle,et al. A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .
[21] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[22] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[23] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[24] Mario Ohlberger,et al. A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..
[25] Assyr Abdulle,et al. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .
[26] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[27] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[28] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[29] Assyr Abdulle,et al. Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..
[30] Mark Ainsworth,et al. Guaranteed computable bounds on quantities of interest in finite element computations , 2012 .
[31] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[32] D. Rovas,et al. Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .
[33] Multiscale Finite Element Methods for Elliptic Equations , 2010 .
[34] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[35] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[36] Somnath Ghosh,et al. Concurrent multi-scale analysis of elastic composites by a multi-level computational model , 2004 .
[37] Sébastien Boyaval. Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2008, Multiscale Model. Simul..
[38] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[39] Sébastien Boyaval,et al. Mathematical modelling and numerical simulation in materials science , 2009 .
[40] Assyr Abdulle,et al. A short and versatile finite element multiscale code for homogenization problems , 2009 .
[41] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[42] J. Tinsley Oden,et al. MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..
[43] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[44] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[45] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[46] A. Patera,et al. A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .
[47] E. Rank,et al. A multiscale finite-element method , 1997 .
[48] Somnath Ghosh,et al. Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials , 2000 .
[49] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[50] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[51] J. Hesthaven,et al. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .