Adaptive reduced basis finite element heterogeneous multiscale method

An adaptive reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is proposed for elliptic problems with multiple scales. The multiscale method is based on the RB-FE-HMM introduced in [A. Abdulle, Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems, J. Comput. Phys. 231 (21) (2012) 7014-7036]. It couples a macroscopic solver with effective data recovered from the solution of micro problems solved on sampling domains. Unlike classical numerical homogenization methods, the micro problems are computed in a finite dimensional space spanned by a small number of accurately computed representative micro solutions (the reduced basis) obtained by a greedy algorithm in an offline stage. In this paper we present a residual-based a posteriori error analysis in the energy norm as well as an a posteriori error analysis in quantities of interest. For both type of adaptive strategies, rigorous a posteriori error estimates are derived and corresponding error estimators are proposed. In contrast to the adaptive finite element heterogeneous multiscale method (FE-HMM), there is no need to adapt the micro mesh simultaneously to the macroscopic mesh refinement. Up to an offline preliminary stage, the RB-FE-HMM has the same computational complexity as a standard adaptive FEM for the effective problem. Two and three dimensional numerical experiments confirm the efficiency of the RB-FE-HMM and illustrate the improvements compared to the adaptive FE-HMM. (C) 2013 Elsevier B.V. All rights reserved.

[1]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[2]  Assyr Abdulle,et al.  A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .

[3]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[4]  Achim Nonnenmacher,et al.  Adaptive Finite Element Methods for Multiscale Partial Differential Equations , 2011 .

[5]  Ricardo H. Nochetto,et al.  A safeguarded dual weighted residual method , 2008 .

[6]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[7]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[8]  H. Schmid On cubature formulae with a minimal number of knots , 1978 .

[9]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[10]  J. Z. Zhu,et al.  The finite element method , 1977 .

[11]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[12]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[13]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[14]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[15]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[16]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[17]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[18]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[19]  Zhiming Chen,et al.  UPSCALING OF A CLASS OF NONLINEAR PARABOLIC EQUATIONS FOR THE FLOW TRANSPORT IN HETEROGENEOUS POROUS MEDIA , 2005 .

[20]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[21]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[22]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[23]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[24]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[25]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[27]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[28]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[29]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[30]  Mark Ainsworth,et al.  Guaranteed computable bounds on quantities of interest in finite element computations , 2012 .

[31]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[32]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[33]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[34]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[35]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[36]  Somnath Ghosh,et al.  Concurrent multi-scale analysis of elastic composites by a multi-level computational model , 2004 .

[37]  Sébastien Boyaval Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2008, Multiscale Model. Simul..

[38]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[39]  Sébastien Boyaval,et al.  Mathematical modelling and numerical simulation in materials science , 2009 .

[40]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[41]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[42]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[43]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[44]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[45]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[46]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[47]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[48]  Somnath Ghosh,et al.  Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials , 2000 .

[49]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[50]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[51]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .