Stability diagrams of laterally coupled triple vertical quantum dots in triangular arrangement

We investigate three vertical quantum dots (QDs) laterally coupled in a triangular arrangement forming a triple QD (tQD) with common source and drain electrodes. The three equidistant dot mesas each have one gate electrode allowing control of the electrochemical potential in each QD. From the stability diagrams observed by measuring current through the tQD on sweeping the voltages on two of the gate electrodes for different values of voltage on the third gate electrode, we build up part of the three-dimensional stability diagram. Our device can be useful to reveal the consequences of interdot coupling on electronic states in tQDs.

[1]  Y. Nishi,et al.  Manipulation of exchange coupling energy in a few-electron double quantum dot , 2008 .

[2]  N. Yokoyama,et al.  Laterally coupled self-assembled InAs quantum dots embedded in resonant tunnel diode with multigate electrodes , 2008 .

[3]  H. I. Jorgensen,et al.  A triple quantum dot in a single-wall carbon nanotube. , 2008, Nano letters.

[4]  S. Tarucha,et al.  Fabrication and characterization of a laterally coupled vertical triple quantum dot device , 2008 .

[5]  W. Wegscheider,et al.  Quantum dots formed in a GaAs/AlGaAs quantum ring , 2008 .

[6]  R. Haug,et al.  Two-path transport measurements on a triple quantum dot , 2007, 0707.2058.

[7]  A. Greentree,et al.  Electrostatically defined serial triple quantum dot charged with few electrons , 2007, cond-mat/0703450.

[8]  M. Korkusinski,et al.  Topological Hunds rules and the electronic properties of a triple lateral quantum dot molecule , 2006, cond-mat/0610175.

[9]  M. Korkusinski,et al.  Stability diagram of a few-electron triple dot. , 2006, Physical review letters.

[10]  M. L. L. D. Guevara,et al.  Electronic transport through a parallel-coupled triple quantum dot molecule : Fano resonances and bound states in the continuum , 2005, cond-mat/0508727.

[11]  Y. Avishai,et al.  Magnetically tunable Kondo-Aharonov-Bohm effect in a triangular quantum dot. , 2005, Physical review letters.

[12]  S. Tarucha,et al.  Single-Electron Delocalization in Hybrid Vertical-Lateral Double Quantum Dots , 2005, Science.

[13]  C. Beenakker,et al.  All-electronic coherent population trapping in quantum dots , 2005, cond-mat/0506005.

[14]  A. Hewson,et al.  Determination of the Phase Shifts for Interacting Electrons Connected to Reservoirs , 2005, cond-mat/0504771.

[15]  R. Westervelt,et al.  Charging and Spin Effects in Triple Dot Artificial Molecules , 2005 .

[16]  N. Kawakami,et al.  Kondo effect in multiple-dot systems , 2005, cond-mat/0502413.

[17]  M. Korkusinski,et al.  Voltage-controlled coded qubit based on electron spin , 2004, cond-mat/0411535.

[18]  R. Westervelt,et al.  Triple quantum dot charging rectifier , 2004 .

[19]  Jacob M. Taylor,et al.  Tunable Nonlocal Spin Control in a Coupled-Quantum Dot System , 2004, Science.

[20]  S. Sarma,et al.  Pseudo-spin quantum computation in semiconductor nanostructures , 2003, Physical review letters.

[21]  D. Loss,et al.  Spin-entangled currents created by a triple quantum dot. , 2002, Physical review letters.

[22]  S. Tarucha,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[23]  M. Stopa Rectifying behavior in Coulomb blockades: charging rectifiers. , 2002, Physical review letters.

[24]  T. Honda,et al.  A new design for submicron double-barrier resonant tunnelling transistors , 1996 .

[25]  Michael J. Berry,et al.  Single-electron charging in double and triple quantum dots with tunable coupling. , 1995, Physical review letters.