Allocation Procedures for Generic Cascade Use Cases - An Evaluation Using Monte Carlo Analysis

Cascade use - a concept for increasing resource efficiency by multiple use of resources - gains in importance, in particular for bio-based materials. Allocation of environmental burdens and costs along the cascade chain plays a major role in deciding whether to establish a cascade or not. This highlights the need for a methodology for properly assessing different types of cascades. To provide guidance in terms of choice of allocation procedure available from life cycle assessment (LCA), Monte Carlo analysis is used. Especially hybrid, individually tailored allocation approaches can be evaluated in this way. The results show a high diversity of possible outcomes in terms of general allocation intensity (how much burden is shifted between steps of the cascade), rank reversals (exchange of positions inside the burden ranking) and variance of the overall results of the cascade allocation. Results are valuable for selecting an allocation procedure for cascade LCA and for further interpreting cascade models using specific allocation procedures.

[1]  Peter J. Fraanje,et al.  Cascading of pine wood , 1997 .

[2]  L. Ahmadi,et al.  Energy efficiency of Li-ion battery packs re-used in stationary power applications , 2014 .

[3]  M. Bauer,et al.  Handbuch Tiefe Geothermie , 2014 .

[4]  Kun-Mo Lee,et al.  Allocation for cascade recycling system , 1997 .

[5]  P. Van den Heede,et al.  Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations , 2012 .

[6]  André Faaij,et al.  Cost and Co2-Emission Reduction of Biomass Cascading: Methodological Aspects and Case Study of SRF Poplar , 2005 .

[7]  Michael Aichinger,et al.  Monte Carlo Simulation , 2013 .

[8]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[9]  Ernst Worrell,et al.  Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling , 2010 .

[10]  Rana Pant,et al.  Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives , 2014 .

[11]  Zainuddin Abdul Manan,et al.  Water pinch analysis for an urban system: a case study on the Sultan Ismail Mosque at the Universiti Teknologi Malaysia (UTM) , 2006 .

[12]  Thorsten Wuest,et al.  Cascade Use and the Management of Product Lifecycles , 2017 .

[13]  Robert E. Dvorak,et al.  Plastics recycling: challenges and opportunities , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  G. Neroth,et al.  Gesteinskörnungen für Mörtel und Beton , 2004 .

[15]  Ted Sirkin,et al.  The cascade chain: A theory and tool for achieving resource sustainability with applications for product design , 1994 .

[16]  Yoshihiro Adachi,et al.  Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology , 2012 .

[17]  Gabriele Weber-Blaschke,et al.  Evaluation of Wood Cascading , 2015 .

[18]  Dominic C.Y. Foo,et al.  Water Cascade Analysis for Single and Multiple Impure Fresh Water Feed , 2007 .

[19]  Gregory A. Keoleian,et al.  Evaluation of Life Cycle Assessment Recycling Allocation Methods , 2013 .

[20]  Takafumi Noguchi,et al.  Minimizing environmental impact and maximizing performance in concrete recycling , 2011 .

[21]  Tomas Ekvall,et al.  Open-loop recycling: Criteria for allocation procedures , 1997 .

[22]  Sean B. Walker,et al.  Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling , 2014 .

[23]  Gabriele Weber-Blaschke,et al.  Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany , 2017 .

[24]  Nenad G. Nenadic,et al.  Environmental trade-offs across cascading lithium-ion battery life cycles , 2015, The International Journal of Life Cycle Assessment.

[25]  Helmut Haberl,et al.  Cascade utilization of biomass: strategies for a more efficient use of a scarce resource , 2000 .

[26]  D. Foo State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis , 2009 .

[27]  M. Finkbeiner,et al.  The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources , 2011 .

[28]  Amund N. Løvik,et al.  Long-term strategies for increased recycling of automotive aluminum and its alloying elements. , 2014, Environmental science & technology.

[29]  Karin Arnold,et al.  Kaskadennutzung von nachwachsenden Rohstoffen: ein Konzept zur Verbesserung der Rohstoffeffizienz und Optimierung der Landnutzung , 2009 .

[30]  Guy Mélard,et al.  On the accuracy of statistical procedures in Microsoft Excel 2010 , 2014, Comput. Stat..

[31]  Dieuwertje Schrijvers,et al.  Developing a systematic framework for consistent allocation in LCA , 2016, The International Journal of Life Cycle Assessment.