Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

[1]  M. Barati,et al.  Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment , 2018 .

[2]  M. Barati,et al.  Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams , 2017 .

[3]  M. Barati,et al.  An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position , 2017 .

[4]  M. Barati,et al.  Flexural Wave Propagation Analysis of Embedded S-FGM Nanobeams Under Longitudinal Magnetic Field Based on Nonlocal Strain Gradient Theory , 2017 .

[5]  M. Barati,et al.  Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium , 2017 .

[6]  Farzad Ebrahimi,et al.  Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams , 2017 .

[7]  M. Barati,et al.  A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures , 2016 .

[8]  M. Barati,et al.  A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates , 2016 .

[9]  M. Barati,et al.  Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory , 2016 .

[10]  F. Ebrahimi,et al.  Vibration analysis of nonlocal beams made of functionally graded material in thermal environment , 2016 .

[11]  M. Barati,et al.  A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment , 2016 .

[12]  F. Ebrahimi,et al.  Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams , 2016 .

[13]  M. Barati,et al.  An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams , 2016 .

[14]  M. Barati,et al.  Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory , 2016 .

[15]  Farzad Ebrahimi,et al.  A Nonlocal Higher-Order Shear Deformation Beam Theory for Vibration Analysis of Size-Dependent Functionally Graded Nanobeams , 2015, Arabian Journal for Science and Engineering.

[16]  A. Farajpour,et al.  Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates , 2016 .

[17]  M. Barati,et al.  Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment , 2016 .

[18]  M. Barati,et al.  Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field , 2016 .

[19]  Z. Deng,et al.  Surface effects on the bending, buckling and free vibration analysis of magneto-electro-elastic beams , 2016 .

[20]  M. Sobhy A comprehensive study on FGM nanoplates embedded in an elastic medium , 2015 .

[21]  M. Abadyan,et al.  Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect , 2015 .

[22]  S. R. Mahmoud,et al.  On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model , 2015 .

[23]  M. Janghorban,et al.  Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory , 2015 .

[24]  Jie Yang,et al.  Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory , 2014 .

[25]  S. Kitipornchai,et al.  Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory , 2014, Acta Mechanica Sinica.

[26]  Y. S. Li,et al.  Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory , 2014 .

[27]  Stéphane Bordas,et al.  Size-dependent free flexural vibration behavior of functionally graded nanoplates , 2012 .

[28]  Chih‐Ping Wu,et al.  A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates , 2009 .

[29]  S. Kitipornchai,et al.  Pull-in instability of nano-switches using nonlocal elasticity theory , 2008 .

[30]  Ernian Pan,et al.  Discrete Layer Solution to Free Vibrations of Functionally Graded Magneto-Electro-Elastic Plates , 2006 .

[31]  Ernian Pan,et al.  FREE VIBRATIONS OF SIMPLY SUPPORTED AND MULTILAYERED MAGNETO-ELECTRO-ELASTIC PLATES , 2002 .

[32]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[33]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[34]  A. Eringen,et al.  On nonlocal elasticity , 1972 .