Frequentist analysis of hierarchical models for population dynamics and demographic data

Hierarchical models include random effects or latent state variables. This class of models includes state–space models for population dynamics, which incorporate process and sampling variation, and models with random individual or year effects in capture–mark–recapture models, for example. This paper reviews methods for frequentist analysis of hierarchical models and gives an example of a non-Gaussian, potentially nonlinear analysis of Lapwing data using the Monte Carlo kernel likelihood (MCKL) method for maximum-likelihood estimation and bridge sampling for calculation of likelihood values given estimated parameters. The Lapwing example uses the state–space model as part of an integrated population model, which combines survey data with ring-recovery demographic data. The methods reviewed include filtering methods, such as the Kalman filter and sequential Monte Carlo (or particle filtering) methods, Monte Carlo expectation maximization, data cloning, and MCKL. The latter methods estimate the maximum-likelihood parameters but omit a normalizing constant from the likelihood that is needed for model comparisons, such as the Akaike information criterion and likelihood ratio tests. The methods reviewed for normalizing constant calculation include filtering, importance sampling, likelihood ratios from importance sampling, and bridge sampling. For the Lapwing example, a novel combination of MCKL parameter estimation, bridge sampling likelihood calculation, and profile likelihood confidence intervals for an integrated population model is presented to illustrate the feasibility of these methods. A complementary view of Bayesian and frequentist analysis is taken.

[1]  Anthony O'Hagan,et al.  Kendall's Advanced Theory of Statistics: Vol. 2B, Bayesian Inference. , 1996 .

[2]  Catherine A Calder,et al.  Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. , 2009, Ecological applications : a publication of the Ecological Society of America.

[3]  Byron J. T. Morgan,et al.  Identifying and diagnosing population declines: a Bayesian assessment of lapwings in the UK , 2008 .

[4]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[5]  Jon T. Schnute,et al.  A General Framework for Developing Sequential Fisheries Models , 1994 .

[6]  Arnaud Doucet,et al.  Particle methods for maximum likelihood estimation in latent variable models , 2008, Stat. Comput..

[7]  Panagiotis Besbeas,et al.  Estimating Population Size and Hidden Demographic Parameters with State‐Space Modeling , 2009, The American Naturalist.

[8]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[9]  T. Severini Likelihood Methods in Statistics , 2001 .

[10]  A. Raftery,et al.  Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .

[11]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[12]  G. Dévai,et al.  Modelling zooplankton population dynamics with the extended Kalman filtering technique , 1998 .

[13]  R King,et al.  Analyzing Complex Capture–Recapture Data in the Presence of Individual and Temporal Covariates and Model Uncertainty , 2008, Biometrics.

[14]  W. Link,et al.  Individual Covariation in Life‐History Traits: Seeing the Trees Despite the Forest , 2002, The American Naturalist.

[15]  P. Valpine Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation , 2004 .

[16]  Brian Dennis,et al.  Hierarchical models in ecology: confidence intervals, hypothesis testing, and model selection using data cloning. , 2009, Ecology.

[17]  André E. Punt,et al.  A Bayesian Approach to Stock Assessment and Harvest Decisions Using the Sampling/Importance Resampling Algorithm , 1994 .

[18]  Joseph E. Cavanaugh,et al.  An improved Akaike information criterion for state-space model selection , 2006, Comput. Stat. Data Anal..

[19]  Patrick J. Sullivan,et al.  A Kalman filter approach to catch-at-length analysis , 1992 .

[20]  Perry de Valpine,et al.  Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear, non-Gaussian state-space models , 2002 .

[21]  B J T Morgan,et al.  The Analysis of Ring‐Recovery Data Using Random Effects , 2003, Biometrics.

[22]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[23]  Alan Hastings,et al.  FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR , 2002 .

[24]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[25]  John Guckenheimer,et al.  Empirical Modelling of Population Time Series Data: The Case of Age and Density Dependent Vital Rates , 2012 .

[26]  A. O'Hagan,et al.  Kendall's Advanced Theory of Statistics, Vol. 2b: Bayesian Inference. , 1996 .

[27]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[28]  William A. Link,et al.  Model-based estimation of individual fitness , 2002 .

[29]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[30]  S. Buckland Introduction to distance sampling : estimating abundance of biological populations , 2001 .

[31]  B. Efron Bayesians, Frequentists, and Scientists , 2005 .

[32]  Stephen T. Buckland,et al.  Fitting Population Dynamics Models to Count and Cull Data Using Sequential Importance Sampling , 2000 .

[33]  Olivier Gimenez,et al.  State-space modelling of data on marked individuals , 2007 .

[34]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[35]  Brian Dennis,et al.  Replicated sampling increases efficiency in monitoring biological populations. , 2010, Ecology.

[36]  Jan C. Neddermeyer Computationally Efficient Nonparametric Importance Sampling , 2008, 0805.3591.

[37]  O Gimenez,et al.  Individual heterogeneity in studies on marked animals using numerical integration: capture-recapture mixed models. , 2010, Ecology.

[38]  Andrew Harvey,et al.  Forecasting, structural time series models and the Kalman filter: Selected answers to exercises , 1990 .

[39]  Joseph P. Romano On weak convergence and optimality of kernel density estimates of the mode , 1988 .

[40]  T. Robinson,et al.  Models for Ecological Data: An Introduction , 2008 .

[41]  M. Conroy,et al.  Modeling demographic processes in marked populations , 2009 .

[42]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[43]  Kenneth P. Burnham,et al.  Evaluation of some random effects methodology applicable to bird ringing data , 2002 .

[44]  B. Efron Empirical Bayes Methods for Combining Likelihoods , 1996 .

[45]  Bruce E. Kendall,et al.  ANALYSIS OF SIZE TRAJECTORY DATA USING AN ENERGETIC-BASED GROWTH MODEL , 2005 .

[46]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[47]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[48]  Perry de Valpine Shared challenges and common ground for Bayesian and classical analysis of hierarchical statistical models. , 2009 .

[49]  O. Gimenez,et al.  Use of Integrated Modeling to Enhance Estimates of Population Dynamics Obtained from Limited Data , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[50]  S. Lele,et al.  ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE, AND OBSERVATION ERROR , 2006 .

[51]  S. Ellner,et al.  USING PVA FOR MANAGEMENT DESPITE UNCERTAINTY: EFFECTS OF HABITAT, HATCHERIES, AND HARVEST ON SALMON , 2003 .

[52]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[53]  Cheng-Der Fuh,et al.  Efficient likelihood estimation in state space models , 2006 .

[54]  George Casella,et al.  Implementations of the Monte Carlo EM Algorithm , 2001 .

[55]  Abstr Am SOME PROBLEMS IN ESTIMATING POPULATION SIZES FROM CATCH-ATAGE DATA , 1988 .

[56]  Éric Parent,et al.  A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data , 2004 .

[57]  Nicholas G. Polson,et al.  MCMC maximum likelihood for latent state models , 2007 .

[58]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[59]  Byron J. T. Morgan,et al.  The efficient integration of abundance and demographic data , 2003 .

[60]  William A Link,et al.  An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals. , 2009, Ecology.

[61]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .

[62]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[63]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[64]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[65]  Panagiotis Besbeas,et al.  Population growth in snow geese: a modeling approach integrating demographic and survey information. , 2007, Ecology.

[66]  Stephen T. Buckland,et al.  A UNIFIED FRAMEWORK FOR MODELLING WILDLIFE POPULATION DYNAMICS † , 2005 .

[67]  Len Thomas,et al.  Monte carlo inference for state-space models of wild animal populations. , 2009, Biometrics.

[68]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[69]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[70]  David L. Borchers,et al.  Estimating Animal Abundance: Closed Populations , 2010 .

[71]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[72]  Byron J. T. Morgan,et al.  Modelling the survival of British Lapwings Vanellus vanellus using ring-recovery data and weather covariates , 1999 .

[73]  Simon J. Bonner,et al.  Bayesian Analysis for Population Ecology by KING, R., MORGAN, B. J. T., GIMENEZ, O., and BROOKS, S. P. , 2011 .

[74]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[75]  P Besbeas,et al.  Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters , 2002, Biometrics.

[76]  Peter Müller,et al.  INCORPORATING MULTIPLE SOURCES OF STOCHASTICITY INTO DYNAMIC POPULATION MODELS , 2003 .

[77]  Charles J. Geyer,et al.  Estimation and Optimization of Functions , 1996 .

[78]  Jonas Knape,et al.  ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS OF TIME SERIES DATA. , 2008, Ecology.

[79]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[80]  Wolfgang Jank,et al.  Ascent EM for fast and global solutions to finite mixtures: An application to curve-clustering of online auctions , 2006, Comput. Stat. Data Anal..

[81]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[82]  J. Cavanaugh,et al.  A BOOTSTRAP VARIANT OF AIC FOR STATE-SPACE MODEL SELECTION , 1997 .

[83]  J. Andrew Royle,et al.  Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities , 2008 .

[84]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[85]  J. Andrew Royle,et al.  Random effects and shrinkage estimation in capture-recapture models , 2002 .

[86]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[87]  R. Hilborn,et al.  State-space likelihoods for nonlinear fisheries time-series , 2005 .

[88]  Galin L. Jones,et al.  Ascent‐based Monte Carlo expectation– maximization , 2005 .

[89]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[90]  D. Mayo,et al.  Severe Testing as a Basic Concept in a Neyman–Pearson Philosophy of Induction , 2006, The British Journal for the Philosophy of Science.

[91]  M. Dowd A sequential Monte Carlo approach for marine ecological prediction , 2006 .

[92]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[93]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter. , 1991 .

[94]  Stephen T. Buckland,et al.  State-space models for the dynamics of wild animal populations , 2004 .

[95]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[96]  Panagiotis Besbeas,et al.  Methods for joint inference from panel survey and demographic data. , 2006, Ecology.

[97]  Hans R. Künsch,et al.  Approximating and Maximising the Likelihood for a General State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[98]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[99]  A. Ives,et al.  Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. , 2007, Ecology.

[100]  E A Thompson,et al.  Evaluation of likelihood ratios for complex genetic models. , 1991, IMA journal of mathematics applied in medicine and biology.

[101]  Perry de Valpine Shared challenges and common ground for Bayesian and classical analysis of hierarchical statistical models. , 2009, Ecological applications : a publication of the Ecological Society of America.

[102]  Perry de Valpine,et al.  Population dynamics of an Arctiid caterpillar-tachinid parasitoid system using state-space models. , 2010, The Journal of animal ecology.

[103]  Brian Dennis,et al.  Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.

[104]  Panagiotis Besbeas,et al.  Completing the Ecological Jigsaw , 2009 .

[105]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[106]  Jens Ledet Jensen,et al.  Asymptotic normality of the maximum likelihood estimator in state space models , 1999 .

[107]  S. Brooks,et al.  A Bayesian approach to combining animal abundance and demographic data , 2004 .

[108]  Improved Estimation of Normalizing Constants From Markov Chain Monte Carlo Output , 2008 .

[109]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[110]  G. Nicholls,et al.  Bridge estimation of the probability density at a point , 2001 .

[111]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[112]  S. T. Buckland,et al.  Estimating Animal Abundance , 2002 .