Influence of Rare-Earth Substitution for Iron in FeCrMoCB Bulk Metallic Glasses

The effects of rare earth addition on the glass forming ability of Fe50–xCr15Mo14C15B6Mx (x = 0, 2 and M = Y, Gd) bulks and ribbons are studied. The thermal and structural properties of the samples are measured by a combination of differential scanning calorimetry (DSC), x-ray diffraction and scanning electron microscopy. Chemical compositions are checked by energy dispersive spectroscopy analysis. The copper mold casting technique leads to a fully amorphous structure up to 2mm only for compositions containing Y or Gd. In the case of ribbons, a fully amorphous phase is observed for all the compositions. The roles of Y and Gd are discussed on the basis of melting behavior analyzed by high-temperature DSC. Such elements act as oxygen scavengers, avoiding heterogeneous nucleation.