Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy

Cardiac anatomy and function adapt in response to chronic cardiac resynchronization therapy (CRT). The effects of these changes on the optimal left ventricle (LV) lead location and timing delay settings have yet to be fully explored.

[1]  Wilfried Mullens,et al.  Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. , 2009, Journal of the American College of Cardiology.

[2]  D. Rosenthal,et al.  A Pilot Study Assessing ECG versus ECHO Ventriculoventricular Optimization in Pediatric Resynchronization Patients , 2016, Journal of cardiovascular electrophysiology.

[3]  Jeroen J. Bax,et al.  Left Ventricular Reverse Remodeling but Not Clinical Improvement Predicts Long-Term Survival After Cardiac Resynchronization Therapy , 2005, Circulation.

[4]  David Tepper,et al.  Optimal Left Ventricular Lead Position Predicts Reverse Remodeling and Survival After Cardiac Resynchronization Therapy , 2009 .

[5]  Jeroen J. Bax,et al.  Results of the Predictors of Response to CRT (PROSPECT) Trial , 2008, Circulation.

[6]  Stuart P. Rosenberg,et al.  A comparison of left ventricular endocardial, multisite, and multipolar epicardial cardiac resynchronization: an acute haemodynamic and electroanatomical study. , 2014, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[7]  E Fleck,et al.  Effect of Resynchronization Therapy Stimulation Site on the Systolic Function of Heart Failure Patients , 2001, Circulation.

[8]  B. Kristensen,et al.  Sequential Versus Simultaneous Biventricular Resynchronization for Severe Heart Failure: Evaluation by Tissue Doppler Imaging , 2002, Circulation.

[9]  G. Plank,et al.  The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study , 2016, Journal of molecular and cellular cardiology.

[10]  M. Gold,et al.  Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) study. , 2013, European heart journal.

[11]  Gianni Pastore,et al.  Determination of the Longest Intrapatient Left Ventricular Electrical Delay May Predict Acute Hemodynamic Improvement in Patients After Cardiac Resynchronization Therapy , 2014, Circulation. Arrhythmia and electrophysiology.

[12]  Maxime Sermesant,et al.  In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing , 2013, Medical Image Anal..

[13]  Andrew D. McCulloch,et al.  Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle , 2000 .

[14]  Thorsten Feiweier,et al.  In vivo diffusion tensor MRI of the human heart: Reproducibility of breath‐hold and navigator‐based approaches , 2013, Magnetic resonance in medicine.

[15]  F. Prinzen,et al.  Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with conventional biventricular pacing at any site. , 2015, Heart rhythm.

[16]  P. Heerdt,et al.  Disparity of Isoflurane Effects on Left and Right Ventricular Afterload and Hydraulic Power Generation in Swine , 1998, Anesthesia and analgesia.

[17]  Kawal S. Rhode,et al.  Analysis of Catheter-Based Registration with Vessel-Radius Weighting of 3D CT Data to 2D X-ray for Cardiac Catheterisation Procedures in a Phantom Study , 2011, STACOM.

[18]  Nael F Osman,et al.  Three-Dimensional Mapping of Optimal Left Ventricular Pacing Site for Cardiac Resynchronization , 2007, Circulation.

[19]  Lawrence Mitchell,et al.  Simulating Human Cardiac Electrophysiology on Clinical Time-Scales , 2011, Front. Physio..

[20]  Roy C. P. Kerckhoffs,et al.  Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart , 2003 .

[21]  N. Peters,et al.  The interaction of interventricular pacing intervals and left ventricular lead position during temporary biventricular pacing evaluated by tissue Doppler imaging , 2007, Heart.

[22]  Suneet Mittal,et al.  Primary Results From the SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy (SMART-AV) Trial: A Randomized Trial Comparing Empirical, Echocardiography-Guided, and Algorithmic Atrioventricular Delay Programming in Cardiac Resynchron , 2010, Circulation.

[23]  A. Waggoner,et al.  Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. , 2004, Heart rhythm.

[24]  C. Leclercq,et al.  Improvement in acute contractility and hemodynamics with multipoint pacing via a left ventricular quadripolar pacing lead , 2014, Journal of Interventional Cardiac Electrophysiology.

[25]  Hein Putter,et al.  Hemodynamic Effects of Long-Term Cardiac Resynchronization Therapy: Analysis by Pressure-Volume Loops , 2006 .

[26]  M. Ginks,et al.  Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. , 2011, Journal of the American College of Cardiology.

[27]  D. Kass,et al.  Subcellular Structures and Function of Myocytes Impaired During Heart Failure Are Restored by Cardiac Resynchronization Therapy , 2012, Circulation research.

[28]  M. Keane,et al.  Reverse remodelling in heart failure with cardiac resynchronisation therapy , 2005, Heart.

[29]  Lluís Mont,et al.  2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). , 2013, European heart journal.

[30]  Olivier Ecabert,et al.  Automatic Whole Heart Segmentation in Static Magnetic Resonance Image Volumes , 2007, MICCAI.

[31]  B. Jugdutt,et al.  Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. , 1996, Circulation.

[32]  Peter Søgaard,et al.  Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. , 2002, Journal of the American College of Cardiology.

[33]  A. McCulloch,et al.  Measurement of strain and analysis of stress in resting rat left ventricular myocardium. , 1993, Journal of biomechanics.

[34]  D. Dutka,et al.  Left ventricular lead placement in cardiac resynchronization therapy: where and how? , 2009, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[35]  K. T. ten Tusscher,et al.  Alternans and spiral breakup in a human ventricular tissue model. , 2006, American journal of physiology. Heart and circulatory physiology.

[36]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[37]  W. Santamore,et al.  Hemodynamic consequences of ventricular interaction as assessed by model analysis. , 1991, The American journal of physiology.

[38]  Wojciech Zareba,et al.  Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT) Trial , 2011, Circulation.

[39]  Michael R Gold,et al.  Optimization of Cardiac Resynchronization Therapy: Importance of Programmed Parameters , 2012, Journal of cardiovascular electrophysiology.

[40]  S. Keteyian,et al.  Randomized controlled trial comparing simultaneous versus optimized sequential interventricular stimulation during cardiac resynchronization therapy. , 2012, American heart journal.

[41]  T. Muramatsu,et al.  Maximum Derivative of Left Ventricular Pressure Predicts Cardiac Mortality After Cardiac Resynchronization Therapy , 2010, Clinical cardiology.

[42]  Hervé Delingette,et al.  Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population , 2012, IEEE Transactions on Medical Imaging.

[43]  P. Doevendans,et al.  Cardiac resynchronization therapy beyond nominal settings: who needs individual programming of the atrioventricular and interventricular delay? , 2012, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[44]  Brian O'Rourke,et al.  Electrophysiological Consequences of Dyssynchronous Heart Failure and Its Restoration by Resynchronization Therapy , 2009, Circulation.

[45]  Mustafa Karamanoglu,et al.  A Right Ventricular Pressure Waveform Based Pulse Contour Cardiac Output Algorithm in Canines , 2006, Cardiovascular engineering.

[46]  G. Plank,et al.  Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. , 2011, Cardiovascular research.

[47]  J. Daubert,et al.  Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. , 2007, European heart journal.

[48]  D. Dutka,et al.  Impact of VV optimization in relation to left ventricular lead position: an acute haemodynamic study. , 2011, Europace.

[49]  G. Boriani,et al.  A Prospective Randomized Evaluation of VV Delay Optimization in CRT‐D Recipients: Echocardiographic Observations from the RHYTHM II ICD Study , 2009, Pacing and clinical electrophysiology : PACE.

[50]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[51]  Damien Rohmer,et al.  Reconstruction and Visualization of Fiber and Laminar Structure in the Normal Human Heart from Ex Vivo Diffusion Tensor Magnetic Resonance Imaging (DTMRI) Data , 2007, Investigative radiology.