From numerics to combinatorics: a survey of topological methods for vector field visualization

Topological methods are important tools for data analysis, and recently receiving more and more attention in vector field visualization. In this paper, we give an introductory description to some important topological methods in vector field visualization. Besides traditional methods of vector field topology, space-time method and finite-time Lyapunov exponent, we also include in this survey Hodge decomposition, combinatorial vector field topology, Morse decomposition, and robustness, etc. In addition to familiar numerical techniques, more and more combinatorial tools emerge in vector field visualization. The numerical methods often rely on error-prone interpolations and interpolations, while combinatorial techniques produce robust but coarse features. In this survey, we clarify the relevant concepts and hope to guide future topological research in vector field visualization.Graphical abstract

[1]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[2]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[3]  J. Marsden,et al.  Lagrangian analysis of fluid transport in empirical vortex ring flows , 2006 .

[4]  Han-Wei Shen,et al.  Graph-based seed scheduling for out-of-core FTLE and pathline computation , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[5]  Hans Hagen,et al.  Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.

[6]  Xavier Tricoche,et al.  Visualizing Invariant Manifolds in Area-Preserving Maps , 2012 .

[7]  William D. Kalies,et al.  A computational approach to conley's decomposition theorem , 2006 .

[8]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[9]  Herbert Edelsbrunner,et al.  Quantifying Transversality by Measuring the Robustness of Intersections , 2009, Found. Comput. Math..

[10]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  Gerik Scheuermann,et al.  The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.

[12]  Andrzej Szymczak Hierarchy of Stable Morse Decompositions , 2013, IEEE Transactions on Visualization and Computer Graphics.

[13]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[14]  Daniel Weiskopf,et al.  Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory , 2010, Comput. Vis. Sci..

[15]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[16]  Joel Smoller,et al.  The Conley Index , 1983 .

[17]  Andrzej Szymczak,et al.  Simplification of Morse Decompositions Using Morse Set Mergers , 2014, Topological Methods in Data Analysis and Visualization.

[18]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[19]  Robert Haimes,et al.  An analysis of 3-D particle path integration algorithms , 1995 .

[20]  Gerik Scheuermann,et al.  Locating Closed Streamlines in 3D Vector Fields , 2002, VisSym.

[21]  Robert van Liere,et al.  Multi-level topology for flow visualization , 2000, Comput. Graph..

[22]  Alex T. Pang,et al.  Stable Feature Flow Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Xavier Tricoche,et al.  Visualization of Topological Structures in Area-Preserving Maps , 2011, IEEE Transactions on Visualization and Computer Graphics.

[24]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[25]  Marie Loren Luong Topology-Based Methods in Visualization II , 2009, Mathematics and Visualization.

[26]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[27]  Filip Sadlo,et al.  Topology-guided Visualization of Constrained Vector Fields , 2007, Topology-based Methods in Visualization.

[28]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[29]  Robert S. Laramee,et al.  Morse Set Classification and Hierarchical Refinement Using Conley Index , 2012, IEEE Transactions on Visualization and Computer Graphics.

[30]  Tomás Caraballo,et al.  Morse Decomposition of Attractors for Non-autonomous Dynamical Systems , 2013 .

[31]  Christian Rössl,et al.  A benchmark for evaluating FTLE computations , 2012, 2012 IEEE Pacific Visualization Symposium.

[32]  Yong Jung Kim A MATHEMATICAL INTRODUCTION TO FLUID MECHANICS , 2008 .

[33]  Bruno Lévy,et al.  Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  R. Ho Algebraic Topology , 2022 .

[35]  Lambertus Hesselink,et al.  Feature comparisons of 3-D vector fields using earth mover's distance , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[36]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[37]  Valerio Pascucci,et al.  The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[38]  Gerik Scheuermann,et al.  Toward the Extraction of Saddle Periodic Orbits , 2014, Topological Methods in Data Analysis and Visualization.

[39]  Ingrid Hotz,et al.  Combinatorial 2D Vector Field Topology Extraction and Simplification , 2011, Topological Methods in Data Analysis and Visualization.

[40]  Holger Theisel,et al.  Streak Lines as Tangent Curves of a Derived Vector Field , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Afonso Paiva,et al.  Meshless Helmholtz-Hodge Decomposition , 2010, IEEE Transactions on Visualization and Computer Graphics.

[42]  D. Asimov Notes on the Topology of Vector Fields and Flows , 2003 .

[43]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[44]  Paul Rosen,et al.  2D Vector Field Simplification Based on Robustness , 2014, 2014 IEEE Pacific Visualization Symposium.

[45]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[46]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[47]  Mrinal K. Mandal,et al.  Efficient Hodge-Helmholtz decomposition of motion fields , 2005, Pattern Recognit. Lett..

[48]  Thomas Ertl,et al.  Scale-Space Tracking of Critical Points in 3D Vector Fields , 2007, Topology-based Methods in Visualization.

[49]  Konstantin Mischaikow,et al.  The Conley index theory: A brief introduction , 1999 .

[50]  Filip Sadlo,et al.  Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology , 2009, Topology-Based Methods in Visualization II.

[51]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[52]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[53]  Gerik Scheuermann,et al.  Combinatorial Vector Field Topology in Three Dimensions , 2012 .

[54]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[55]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[56]  Konstantin Mischaikow,et al.  Chapter 9 – Conley Index , 2002 .

[57]  Topological Methods in Data Analysis and Visualization , 2011, Mathematics and Visualization.

[58]  Kyle Johnsen,et al.  Computation of Localized Flow for Steady and Unsteady Vector Fields and Its Applications , 2007 .

[59]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[60]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[61]  Xavier Tricoche,et al.  Vector and tensor field topology simplification, tracking, and visualization , 2002 .

[62]  Michael Henle,et al.  A combinatorial introduction to topology , 1978 .

[63]  Filip Sadlo,et al.  Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[64]  R. Forman Combinatorial vector fields and dynamical systems , 1998 .

[65]  Xavier Tricoche,et al.  Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.

[66]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[67]  Hans-Peter Seidel,et al.  Topological simplification of 3D vector fields and extracting higher order critical points , 2005 .

[68]  Andrzej Szymczak,et al.  Nearly Recurrent Components in 3D Piecewise Constant Vector Fields , 2012, Comput. Graph. Forum.

[69]  Holger Theisel,et al.  On the Way Towards Topology-Based Visualization of Unsteady Flow , 2010, Eurographics.

[70]  Holger Theisel,et al.  The State of the Art in Topology‐Based Visualization of Unsteady Flow , 2011, Comput. Graph. Forum.

[71]  Hans Hagen,et al.  Higher Order Singularities in Piecewise Linear Vector Fields , 2000, IMA Conference on the Mathematics of Surfaces.

[72]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[73]  Philippe Blanc-Benon,et al.  Vortex identification and tracking in unsteady flows , 2009 .

[74]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[75]  Gerik Scheuermann,et al.  Computation of Localized Flow for Steady and Unsteady Vector Fields and Its Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[76]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[77]  Valerio Pascucci,et al.  Extracting Features from Time‐Dependent Vector Fields Using Internal Reference Frames , 2014, Comput. Graph. Forum.

[78]  G. E. Mase,et al.  Continuum Mechanics for Engineers , 1991 .

[79]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[80]  Tino Weinkauf Extraction of Topological Structures in 2D and 3D Vector Fields , 2008, Ausgezeichnete Informatikdissertationen.

[81]  Zhiqiang Wei,et al.  Feature detection and visualization of ocean flow field sources, sinks based on vector field decomposition , 2009, 2009 International Conference on Image Analysis and Signal Processing.

[82]  K. Polthier,et al.  Variational Approach to Vector Field Decomposition , 2000 .

[83]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[84]  Kenneth H. Rosen Handbook of Discrete and Combinatorial Mathematics , 1999 .

[85]  Lambertus Hesselink,et al.  Feature comparisons of vector fields using earth mover's distance , 1998 .

[86]  Melissa A. Green,et al.  Detection of Lagrangian coherent structures in three-dimensional turbulence , 2007, Journal of Fluid Mechanics.

[87]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.

[88]  Primoz Skraba,et al.  Interpreting Feature Tracking Through the Lens of Robustness , 2014, Topological Methods in Data Analysis and Visualization.

[89]  T. Weinkauf,et al.  Combinatorial Feature Flow Fields: Tracking Critical Points in Discrete Scalar Fields , 2011 .

[90]  Hans-Peter Seidel,et al.  Implicit Integral Surfaces , 2012, VMV.

[91]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[92]  Paul Rosen,et al.  Visualizing Robustness of Critical Points for 2D Time‐Varying Vector Fields , 2013, Comput. Graph. Forum.

[93]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[94]  Hans-Christian Hege,et al.  Advected Tangent Curves: A General Scheme for Characteristic Curves of Flow Fields , 2012, Comput. Graph. Forum.

[95]  S. Hanke,et al.  New Approximation Algorithms for the Weighted Matching Problem , 2003 .

[96]  Filip Sadlo,et al.  Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection , 2011, Topological Methods in Data Analysis and Visualization.

[97]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[98]  PascucciValerio,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013 .

[99]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[100]  Hao Wang,et al.  Robust Detection of Singularities in Vector Fields , 2014, Topological Methods in Data Analysis and Visualization.

[101]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[102]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[103]  Filip Sadlo,et al.  Topologically relevant stream surfaces for flow visualization , 2009, SCCG.

[104]  D. Schneider,et al.  Combinatorial Vector Field Topology in 3 Dimensions , 2011 .

[105]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[106]  D. Darmofal,et al.  An Analysis of 3D Particle Path Integration Algorithms , 1996 .

[107]  Hans Hagen,et al.  Vector and Tensor Field Topology Simplification on Irregular Grids , 2001, VisSym.

[108]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[109]  Andrzej Szymczak Stable Morse Decompositions for Piecewise Constant Vector Fields on Surfaces , 2011, Comput. Graph. Forum.

[110]  Lambertus Hesselink,et al.  Surface representations of two- and three-dimensional fluid flow topology , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[111]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[112]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[113]  S. Shadden,et al.  A dynamical systems approach to unsteady systems , 2006 .

[114]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[115]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.