Formation of the distribution function for runaway electrons in strong fields of pulsed gas discharges

A simplified Boltzmann equation describing the escape of electrons in a weakly ionized gas is constructed. The electric fields are assumed to be so strong that all electrons are runaway electrons and the electron distribution function is strongly anisotropic. The equation is solved analytically, and it is shown that the electron density in relatively weak fields exponentially increases with time, while the momentum dependence of the distribution function exponentially decreases. In strong fields, the electron density increases with time logarithmically and the momentum dependence of the electron distribution function is nonmonotonic. The characteristic scales of time and energy, which determine different scenarios, are obtained.

[1]  Kolobov,et al.  Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  R. Roussel-Dupre,et al.  Comparison of relativistic runaway electron avalanche rates obtained from Monte Carlo simulations and kinetic equation solution , 2001 .

[3]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[4]  C. T. R. Wilson,et al.  The Acceleration of β-particles in Strong Electric Fields such as those of Thunderclouds , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  R. Roussel-Dupre,et al.  Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies , 1998 .

[6]  F. Bloch,et al.  Bremsvermögen von Atomen mit mehreren Elektronen , 1933 .

[7]  Karl H. Schoenbach,et al.  Non-Equilibrium Air Plasmas at Atmospheric Pressure , 2004 .

[8]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[9]  R. Thompson,et al.  Electron‐Impact Cross Sections and Energy Deposition in Molecular Hydrogen , 1972 .

[10]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .

[11]  E. Kamke,et al.  Differentialgleichungen. Losungsmethoden und Losungen. I , 1952, The Mathematical Gazette.

[12]  V. Kolobov,et al.  Theory of Pulsed Breakdown of Dense Gases and Optimization of the Voltage Waveform , 2008, IEEE Transactions on Plasma Science.

[13]  K. Zybin,et al.  Kinetic equation for high energy electrons in gases , 1998 .

[14]  Gurevich,et al.  Kinetic theory of runaway air breakdown. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  L. Babich FROM THE CURRENT LITERATURE: Analysis of a new electron-runaway mechanism and record-high runaway-electron currents achieved in dense-gas discharges , 2005 .

[16]  A. Green,et al.  The relation between ionization yields, cross sections and loss functions , 1968 .

[17]  Ionization in strong electric fields and dynamics of nanosecond-pulse plasmas , 2006 .