Performance analysis of CDMA with imperfect power control

The standard correlation receiver for code-division multiple access (CDMA) systems is susceptible to the near-far problem. Power control techniques attempt to overcome near-far effects by varying transmitted power levels to ensure that all signals are received with equal power levels. Since these algorithms cannot perfectly compensate for power fluctuations in a mobile communications channel, the capacity of the system is reduced for a given bit-error rate (BER). This paper examines the performance of a CDMA system using imperfect power control by extending analytical techniques that account for multiple access interference. Single cell capacity is compared with systems employing perfect power control.

[1]  Sergio Verdú,et al.  Near-far resistance of multiuser detectors in asynchronous channels , 1990, IEEE Trans. Commun..

[2]  B. D. Woerner,et al.  An analysis of CDMA with imperfect power control , 1992, [1992 Proceedings] Vehicular Technology Society 42nd VTS Conference - Frontiers of Technology.

[3]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part I: System Analysis , 1977, IEEE Transactions on Communications.

[4]  Andrew J. Viterbi,et al.  On the capacity of a cellular CDMA system , 1991 .

[5]  D. V. Sarwate,et al.  Error Probability for Direct-Sequence Spread-Spectrum Multiple-Access Communications - Part I: Upper and Lower Bounds , 1982, IEEE Transactions on Communications.

[6]  Behnaam Aazhang,et al.  Multistage detection in asynchronous code-division multiple-access communications , 1990, IEEE Trans. Commun..

[7]  William C. Y. Lee,et al.  Mobile Communications Design Fundamentals , 1986 .

[8]  C.L. Weber,et al.  Performance considerations of code division multiple-access systems , 1981, IEEE Transactions on Vehicular Technology.

[9]  Jack M. Holtzman,et al.  Direct Sequence CDMA Power Control, Interleaving, and Coding , 1993, IEEE J. Sel. Areas Commun..

[10]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[11]  James S. Lehnert,et al.  Bit-to-bit error dependence in slotted DS/SSMA packet systems with random signature sequences , 1989, IEEE Trans. Commun..

[12]  Rick Cameron Performance analysis of CDMA systems in multipath channels , 1993 .

[13]  James S. Lehnert An efficient technique for evaluating direct-sequence spread-spectrum multiple-access communications , 1989, IEEE Trans. Commun..

[14]  Michael B. Pursley Spread-Spectrum Multiple-Access Communications , 1981 .

[15]  William C. Y. Lee,et al.  Mobile Communications Design Fundamentals: Lee/Mobile , 1993 .

[16]  Jack M. Holtzman,et al.  Analysis of a simple successive interference cancellation scheme in a DS/CDMA system , 1994, IEEE J. Sel. Areas Commun..

[17]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[18]  R. Padovani,et al.  Implications of mobile cellular CDMA , 1992, IEEE Communications Magazine.

[19]  Andrew J. Viterbi,et al.  Performance of power-controlled wideband terrestrial digital communication , 1993, IEEE Trans. Commun..

[20]  Gordon L. Stüber,et al.  Analysis of a direct-sequence spread-spectrum cellular radio system , 1993, IEEE Trans. Commun..

[21]  Theodore S. Rappaport,et al.  Performance Evaluation for Cellular CDMA , 1992, IEEE J. Sel. Areas Commun..

[22]  E. A. Geraniotis,et al.  Error Probability for Direct-Sequence Spread-Spectrum Multiple-Access Communications - Part II: Approximations , 1982, IEEE Transactions on Communications.

[23]  Michael B. Pursley,et al.  Error Probabilities for Binary Direct-Sequence Spread-Spectrum Communications with Random Signature Sequences , 1987, IEEE Trans. Commun..

[24]  Jack M. Holtzman,et al.  A simple, accurate method to calculate spread-spectrum multiple-access error probabilities , 1992, IEEE Trans. Commun..