Residual-based Discretization Error Estimation for Computational Fluid Dynamics

Discretization error is the largest and most difficult numerical error to estimate for a numerical simulation, and boundary conditions often contribute a significant source of error. Burgers’ equation is used to investigate the formulation of Neumann boundary conditions within the context of discretization error estimation using error transport equations (a residual-based method which solves differential equations governing the transport of numerical error). A strong formulation for the boundary conditions utilizes a computational ghost cell as opposed to a weak formulation which applies the boundary condition directly to the computational domain boundary. The use of the ghost cell allows for error cancelation that results in significantly more accurate discretization error estimation.

[1]  Christopher J. Roy,et al.  Finite Volume Solution Reconstruction Methods For Truncation Error Estimation , 2013 .

[2]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[3]  HighWire Press Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character , 1896 .

[4]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[5]  Peter A. Cavallo,et al.  An Error Transport Equation with Practical Applications , 2007 .

[6]  Gusheng Hu,et al.  Single Grid Error Estimation Using Error Transport Equation , 2004 .

[7]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[8]  Dominique Pelletier,et al.  VERIFICATION OF ERROR ESTIMATORS FOR THE EULER EQUATIONS , 2000 .

[9]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[10]  Christopher J. Roy,et al.  Structured Mesh r-Refinement using Truncation Error Equidistribution for 1D and 2D Euler Problems , 2013 .

[11]  Christopher J. Roy,et al.  Residual Methods for Discretization Error Estimation , 2011 .

[12]  R. Skeel Thirteen ways to estimate global error , 1986 .

[13]  P. Knupp,et al.  Completed Richardson extrapolation , 1993 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  X. Zhang,et al.  A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws , 2000 .

[16]  Timothy G. Trucano,et al.  Verification and validation benchmarks , 2008 .

[17]  Tom Shih,et al.  Estimating Grid-Induced Errors in CFD by Discrete-Error-Transport Equations , 2004 .

[18]  Christopher J. Roy,et al.  Grid Convergence Error Analysis for Mixed-Order Numerical Schemes , 2001 .

[20]  Richard Dwight,et al.  Algebraic multigrid within defect correction for the linearized Euler equations , 2010, Numer. Linear Algebra Appl..

[21]  Christopher J. Roy,et al.  Numerical Benchmark Solutions for Laminar and Turbulent Flows , 2012 .

[22]  H. Stetter The defect correction principle and discretization methods , 1978 .

[23]  Curtis R. Mitchell,et al.  K-exact reconstruction for the Navier-Stokes equations on arbitrary grids , 1993 .

[24]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[25]  Yuehui Qin,et al.  A Method for Estimating Grid-Induced Errors in Finite-Difference and Finite-Volume Methods , 2003 .

[26]  S. Richards Completed Richardson extrapolation in space and time , 1997 .

[27]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[28]  Eusebio Valero,et al.  The estimation of truncation error by τ-estimation revisited , 2012, J. Comput. Phys..

[29]  Christopher J. Roy,et al.  Verification and Validation in Scientific Computing , 2010 .

[30]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[31]  B. Williams Development and Evaluation of an à Posteriori Method for Estimating and Correcting GridInduced Errors in Solutions of the NavierStokes Equations , 2009 .

[32]  C. J. Roy Strategies for Driving Mesh Adaptation in CFD (Invited) , 2009 .

[33]  Carl Ollivier-Gooch,et al.  Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations , 2009 .

[34]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[35]  Christopher J. Roy,et al.  SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development , 2013 .

[36]  V. Pereyra On improving an approximate solution of a functional equation by deferred corrections , 1966 .

[37]  Curtis R. Mitchell,et al.  Practical aspects of spatially high-order accurate methods , 1993 .

[38]  Christopher J. Roy,et al.  A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics , 2016 .

[39]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[40]  Tom I-P. Shih,et al.  A discrete transport equation for error estimation in CFD , 2002 .

[41]  Christopher J. Roy,et al.  Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics , 2014 .

[42]  Christopher J. Roy,et al.  Review of Discretization Error Estimators in Scientific Computing , 2010 .

[43]  S. Fulton ON THE ACCURACY OF MULTIGRID TRUNCATION ERROR ESTIMATES ON STAGGERED GRIDS , 2009 .

[44]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[45]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[46]  Christopher J. Roy,et al.  Review of code and solution verification procedures for computational simulation , 2005 .

[47]  Wanai Li,et al.  High‐order k‐exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids , 2012 .

[48]  Gecheng Zha,et al.  Improved Seventh-Order WENO Scheme , 2010 .

[49]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[50]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[51]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[52]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[53]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[54]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[55]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[56]  Carol S. Woodward,et al.  Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport , 2011 .

[57]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[58]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[59]  Peter A. Cavallo,et al.  Viscous Error Transport Equation for Error Quantification of Turbulent Flows , 2008 .

[60]  T. Shih,et al.  Modeling the Residual in Error-Transport Equations for Estimating Grid-Induced Errors in CFD Solutions , 2006 .

[61]  William J. Rider,et al.  On sub-linear convergence for linearly degenerate waves in capturing schemes , 2008, J. Comput. Phys..