Nonlinear Choquard equations: Doubly critical case

Abstract Consider nonlinear Choquard equations − Δ u + u = ( I α ∗ F ( u ) ) F ′ ( u ) in  R N , lim x → ∞ u ( x ) = 0 , where I α denotes Riesz potential and α ∈ ( 0 , N ) . In this paper, we show that when F is doubly critical, i.e. F ( u ) = N N + α | u | N + α N + N − 2 N + α | u | N + α N − 2 , the nonlinear Choquard equation admits a nontrivial solution if N ≥ 5 and α + 4 N .

[1]  Elliott H. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[2]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent , 2014, 1403.7414.

[3]  Y. Ao Existence of solutions for a class of nonlinear Choquard equations with critical growth , 2016, Applicable Analysis.

[4]  C. O. Alves,et al.  Radially Symmetric Solutions for a Class of Critical Exponent Elliptic Problems in R N , 1996 .

[5]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[6]  Irene M. Moroz,et al.  An analytical approach to the Schrödinger-Newton equations , 1999 .

[7]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[8]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[9]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[10]  Jinmyoung Seok,et al.  Nonlinear Choquard equations involving a critical local term , 2017, Appl. Math. Lett..

[11]  Jinmyoung Seok Limit profiles and uniqueness of ground states to the nonlinear Choquard equations , 2017, Advances in Nonlinear Analysis.

[12]  Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.

[13]  Minbo Yang,et al.  Singularly perturbed critical Choquard equations , 2016, 1611.01712.

[14]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[15]  Jean Van Schaftingen,et al.  Odd symmetry of least energy nodal solutions for the Choquard equation , 2016, 1606.05668.

[16]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[17]  P. Lions,et al.  The Choquard equation and related questions , 1980 .

[18]  Ground states and semiclassical states of nonlinear Choquard equations involving Hardy-Littlewood-Sobolev critical growth , 2016, 1611.02919.

[19]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[20]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[21]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[22]  Phan Thanh Nam,et al.  Derivation of Hartree's theory for generic mean-field Bose systems , 2013, 1303.0981.

[23]  M. Willem Minimax Theorems , 1997 .

[24]  Jean Van Schaftingen,et al.  Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.

[25]  G. P. Menzala,et al.  On regular solutions of a nonlinear equation of Choquard's type , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.