Sound Absorption Structures: From Porous Media to Acoustic Metamaterials

The recent advent of acoustic metamaterials has initiated a strong revival of interest on the subject of sound absorption. The present review is based on the physics perspective as the coherent basis of this diverse field. For conventional absorbers, viscous dissipation and heat conduction at the fluid-solid interface, when expressed through micro-geometric parameters, yield an effective medium description of porous media and micro-perforated panels as effectual sound absorbers. Local resonances and their geometric and symmetry constraints serve as the framework for surveying a variety of acoustic metamaterial absorbers that can realize previously unattainable absorption spectra with subwavelength-scale structures. These structures include decorated membrane resonators, degenerate resonators, hybrid resonators, and coiled Fabry-Perot and Helmholtz resonators. As the acoustic response of any structure or material must obey the causality principle, the implied constraint—which relates the absorption spectru...

[1]  Yang-Hann Kim,et al.  A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array. , 2006, The Journal of the Acoustical Society of America.

[2]  R. H. Bolt,et al.  On the Design of Perforated Facings for Acoustic Materials , 1947 .

[3]  F. J. García de abajo,et al.  Anisotropic metamaterials for full control of acoustic waves. , 2012, Physical review letters.

[4]  G. Lerosey,et al.  Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials , 2015, Nature.

[5]  Zheng Wang,et al.  Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. , 2013, Physical review letters.

[6]  K. Rozanov Ultimate thickness to bandwidth ratio of radar absorbers , 2000 .

[7]  D. Lafarge,et al.  Check on a nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media , 2014 .

[8]  Lixi Huang,et al.  Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern , 2014 .

[9]  S. Ivansson Anechoic coatings obtained from two- and three-dimensional monopole resonance diffraction gratings. , 2012, The Journal of the Acoustical Society of America.

[10]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[11]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[12]  P. Sheng,et al.  Homogenization scheme for acoustic metamaterials , 2014 .

[13]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[14]  Schwartz,et al.  Fluid permeability in porous media: Comparison of electrical estimates with hydrodynamical calculations. , 1992, Physical review. B, Condensed matter.

[15]  Xiaobo Yin,et al.  Experimental demonstration of an acoustic magnifying hyperlens. , 2009, Nature materials.

[16]  D. B. Callaway,et al.  The Use of Perforated Facings in Designing Low Frequency Resonant Absorbers , 1952 .

[17]  Vincent Pagneux,et al.  Ultra-thin metamaterial for perfect and omnidirectional sound absorption , 2016, 1606.07776.

[18]  W. Wen,et al.  Low-frequency tunable acoustic absorber based on split tube resonators , 2016 .

[19]  L. Rayleigh,et al.  The theory of sound , 1894 .

[20]  Bin Liang,et al.  Ultra-broadband absorption by acoustic metamaterials , 2014 .

[21]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[22]  P. Sheng,et al.  Coupled membranes with doubly negative mass density and bulk modulus. , 2013, Physical review letters.

[23]  S. Félix,et al.  Experiments on metasurface carpet cloaking for audible acoustics , 2016 .

[24]  Schwartz,et al.  New pore-size parameter characterizing transport in porous media. , 1986, Physical review letters.

[25]  Yvan Champoux,et al.  New empirical equations for sound propagation in rigid frame fibrous materials , 1992 .

[26]  D. Maa,et al.  Potential of microperforated panel absorber , 1998 .

[27]  Guoliang Huang,et al.  Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. , 2013, The Journal of the Acoustical Society of America.

[28]  R. Godwin Optical Mechanism for Enhanced Absorption of Laser Energy Incident on Solid Targets , 1972 .

[29]  Steven A. Cummer,et al.  A sound absorbing metasurface with coupled resonators , 2016 .

[30]  Y. Yoo,et al.  Broadband and Tunable MMPA , 2016 .

[31]  D. Lafarge,et al.  Nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media , 2013 .

[32]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[33]  P. Sheng,et al.  Dark acoustic metamaterials as super absorbers for low-frequency sound , 2012, Nature Communications.

[34]  John H. Page,et al.  Superabsorption of acoustic waves with bubble metascreens , 2015 .

[35]  Shanhui Fan,et al.  Total absorption by degenerate critical coupling , 2014 .

[36]  Lixi Huang,et al.  On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. , 2011, The Journal of the Acoustical Society of America.

[37]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[38]  E. N. Bazley,et al.  Acoustical properties of fibrous absorbent materials , 1970 .

[39]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[40]  Ying Wu,et al.  Elastic metamaterials with simultaneously negative effective shear modulus and mass density. , 2011, Physical review letters.

[41]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[42]  S. Cummer,et al.  Three-dimensional broadband omnidirectional acoustic ground cloak. , 2014, Nature materials.

[43]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[44]  Yvan Champoux,et al.  Air‐based system for the measurement of porosity , 1991 .

[45]  P. Sheng,et al.  Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films , 2015, Scientific Reports.

[46]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[47]  E. Lindman,et al.  Surface-wave absorption , 1975 .

[48]  Wu,et al.  From a profiled diffuser to an optimized absorber , 2000, The Journal of the Acoustical Society of America.

[49]  Huanyang Chen,et al.  Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface , 2014, Nature Communications.

[50]  Pascal Rebillard,et al.  Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness , 1991 .

[51]  M. Biot THEORY OF DEFORMATION OF A POROUS VISCOELASTIC ANISOTROPIC SOLID , 1956 .

[52]  Yun Lai,et al.  Acoustic coherent perfect absorbers , 2014 .

[53]  G. Theocharis,et al.  Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator. , 2016, The Journal of the Acoustical Society of America.

[54]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[55]  U. Ingard On the Theory and Design of Acoustic Resonators , 1953 .

[56]  Ping Sheng,et al.  Subwavelength total acoustic absorption with degenerate resonators , 2015, 1509.03711.

[57]  X. Wen,et al.  Analysis of absorption performances of anechoic layers with steel plate backing. , 2012, The Journal of the Acoustical Society of America.

[58]  R. L. Morse,et al.  RESONANT ABSORPTION OF LASER LIGHT BY PLASMA TARGETS. , 1972 .

[59]  S. Cummer,et al.  Tapered labyrinthine acoustic metamaterials for broadband impedance matching , 2013 .

[60]  Ping Sheng,et al.  Optimal sound-absorbing structures , 2016, 1609.09561.

[61]  P. Sheng,et al.  Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective , 2015 .

[62]  Yong Li,et al.  Acoustic metasurface-based perfect absorber with deep subwavelength thickness , 2016 .

[63]  Xu,et al.  Scattering-theory analysis of waveguide-resonator coupling , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  Franco Nori,et al.  Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media , 2007, 0708.2653.

[65]  David W. Herrin,et al.  Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity , 2010 .

[66]  Soon-Hong Park,et al.  Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption , 2013 .

[67]  G. Hu,et al.  Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators , 2014 .

[68]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[69]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[70]  G. Theocharis,et al.  Control of acoustic absorption in one-dimensional scattering by resonant scatterers , 2015 .

[71]  P. Sheng,et al.  Hybrid elastic solids. , 2011, Nature materials.

[72]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[73]  Sam-Hyeon Lee,et al.  Composite acoustic medium with simultaneously negative density and modulus. , 2010, Physical review letters.

[74]  C. Chan,et al.  Space-coiling metamaterials with double negativity and conical dispersion , 2012, Scientific Reports.

[75]  C. Aristégui,et al.  Soft 3D acoustic metamaterial with negative index. , 2015, Nature materials.

[76]  Yong Li,et al.  Metascreen-Based Acoustic Passive Phased Array , 2015 .

[77]  Sai T. Chu,et al.  Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves , 2014 .

[78]  G. Theocharis,et al.  Use of complex frequency plane to design broadband and sub-wavelength absorbers. , 2016, The Journal of the Acoustical Society of America.

[79]  P. Sheng,et al.  Membrane-type acoustic metamaterial with negative dynamic mass. , 2008, Physical review letters.

[80]  S. Cummer,et al.  Measurement of a broadband negative index with space-coiling acoustic metamaterials. , 2012, Physical review letters.

[81]  Uno Ingard,et al.  Perforated Facing and Sound Absorption , 1954 .

[82]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[83]  L. Hervella-Nieto,et al.  Review in Sound Absorbing Materials , 2008 .

[84]  Gang Wang,et al.  Effects of locally resonant modes on underwater sound absorption in viscoelastic materials. , 2011, The Journal of the Acoustical Society of America.

[85]  Ping Sheng,et al.  Sound absorption by subwavelength membrane structures: A geometric perspective , 2015, 1502.06358.

[86]  G. Theocharis,et al.  Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators , 2016, Scientific Reports.

[87]  Jensen Li,et al.  Extreme acoustic metamaterial by coiling up space. , 2012, Physical review letters.

[88]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.