Automatic alignment of multi-view range maps by optical stereo-tracking

Method: A low cost optical tracking system has been developed with the aim at creating an automatic procedure to align 3D point clouds captured by a structured light system. The tracking system uses stereo images and retro-reflective infrared markers rigidly connected to the scanner. Markers are accurately tracked on the basis of automatic intensity-based analyses. Stereo correspondences are established by using epipolar and similarity constraints.

[1]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[2]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[3]  Anthony J. Maeder,et al.  The correspondence framework for 3D surface matching algorithms , 2005, Comput. Vis. Image Underst..

[4]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Greg Welch,et al.  Motion Tracking: No Silver Bullet, but a Respectable Arsenal , 2002, IEEE Computer Graphics and Applications.

[6]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[7]  Klaus Dorfmüller,et al.  Robust tracking for augmented reality using retroreflective markers , 1999, Comput. Graph..

[8]  Huosheng Hu,et al.  Human motion tracking for rehabilitation - A survey , 2008, Biomed. Signal Process. Control..

[9]  Jurriaan D. Mulder,et al.  Optical tracking and calibration of tangible interaction devices , 2005, EGVE'05.

[10]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[11]  David Fofi,et al.  A review of recent range image registration methods with accuracy evaluation , 2007, Image Vis. Comput..

[12]  Paolo Cignoni,et al.  RoboScan: an automatic system for accurate and unattended 3D scanning , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[13]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[14]  Aly A. Farag,et al.  Real-time vision-based approach for probe tracking in operating room , 2004, CARS.

[15]  A. Verri,et al.  A compact algorithm for rectification of stereo pairs , 2000 .

[16]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Chanjira Sinthanayothin,et al.  Toward robot-assisted dental surgery: Path generation and navigation system using optical tracking approach , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[18]  Sandro Barone,et al.  A REVERSE ENGINEERING METHODOLOGY TO CAPTURE COMPLEX SHAPES , 2004 .

[19]  Leif Kobbelt,et al.  Self-calibrating optical motion tracking for articulated bodies , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[20]  Axel Pinz,et al.  A new optical tracking system for virtual and augmented reality applications , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[21]  G. Sansoni,et al.  Combination of a Vision System and a Coordinate Measuring Machine for the Reverse Engineering of Freeform Surfaces , 2001 .