A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation
暂无分享,去创建一个
[1] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[2] Edward L. Wilson,et al. Incompatible Displacement Models , 1973 .
[3] Douglas N. Arnold,et al. Derivation and Justification of Plate Models by Variational Methods , 2000 .
[4] Michael Ortiz,et al. Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .
[5] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[6] Michael A. Puso,et al. Maximum-entropy meshfree method for incompressible media problems , 2011 .
[7] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[8] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[9] Elías Cueto,et al. A higher order method based on local maximum entropy approximation , 2010 .
[10] Manfred Bischoff,et al. The discrete strain gap method and membrane locking , 2005 .
[11] Michael A. Puso,et al. Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .
[12] E. Ramm,et al. A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .
[13] Sashi K. Kunnath,et al. Meshfree co‐rotational formulation for two‐dimensional continua , 2009 .
[14] Marino Arroyo,et al. On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .
[15] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[16] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[17] J. Reddy. Theory and Analysis of Elastic Plates and Shells , 2006 .
[18] D. Arnold,et al. Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model , 1996 .
[19] Magdalena Ortiz,et al. Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .
[20] Dongdong Wang,et al. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .
[21] Adwait Ratnaparkhi,et al. Learning to Parse Natural Language with Maximum Entropy Models , 1999, Machine Learning.
[22] K. Bathe,et al. The MITC7 and MITC9 Plate bending elements , 1989 .
[23] M. Arroyo,et al. Thin shell analysis from scattered points with maximum‐entropy approximants , 2010, International Journal for Numerical Methods in Engineering.
[24] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[25] Philippe Bouillard,et al. On elimination of shear locking in the element‐free Galerkin method , 2001 .
[26] D. Arnold. Mixed finite element methods for elliptic problems , 1990 .
[27] Elías Cueto,et al. Volumetric locking in natural neighbour Galerkin methods , 2004 .
[28] Ted Belytschko,et al. A coupled finite element-element-free Galerkin method , 1995 .
[29] Robert C. Kirby,et al. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.
[30] Anders Logg,et al. DOLFIN: Automated finite element computing , 2010, TOMS.
[31] Li,et al. Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .
[32] J. C. Simo,et al. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .
[33] S. Kim,et al. Bending analysis of mindlin-reissner plates by the element free galerkin method with penalty technique , 2003 .
[34] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .
[35] Guirong Liu,et al. A point interpolation meshless method based on radial basis functions , 2002 .
[36] S. Frank,et al. Measurement scale in maximum entropy models of species abundance , 2010, Journal of evolutionary biology.
[37] Roger J.-B. Wets,et al. Deriving the Continuity of Maximum-Entropy Basis Functions via Variational Analysis , 2007, SIAM J. Optim..
[38] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[39] C. Duarte,et al. hp-Clouds in Mindlin's thick plate model , 2000 .
[40] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[41] V. Leitão,et al. Eliminating Shear-Locking in Meshless Methods: A Critical Overview and a New Framework for Structural Theories , 2007 .
[42] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[43] D. W. Scharpf,et al. The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).
[44] T. Belytschko,et al. Nodal integration of the element-free Galerkin method , 1996 .
[45] S. N. Atluri,et al. Analysis of shear flexible beams, using the meshless local Petrov‐Galerkin method, based on a locking‐free formulation , 2001 .
[46] R. Jorge,et al. Locking and hourglass phenomena in an element‐free Galerkin context: the B‐bar method with stabilization and an enhanced strain method , 2006 .
[47] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[48] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[49] A. Duarte,et al. Investigations on the hp-Cloud Method by solving Timoshenko beam problems , 2000 .
[50] D. Chapelle,et al. The Finite Element Analysis of Shells - Fundamentals , 2003 .
[51] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[52] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[53] Wing Kam Liu,et al. MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .
[54] R. Wright,et al. Overview and construction of meshfree basis functions: from moving least squares to entropy approximants , 2007 .
[55] N. Sukumar,et al. Maximum Entropy Approximation , 2005 .
[56] Chuanzeng Zhang,et al. A meshfree model without shear-locking for free vibration analysis of first-order shear deformable plates , 2011 .
[57] Locking in the incompressible limit: pseudo-divergence-free element free Galerkin , 2003 .
[58] Klaus-Jürgen Bathe,et al. On evaluating the inf–sup condition for plate bending elements , 1997 .
[59] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[60] K. Bathe,et al. Development of MITC isotropic triangular shell finite elements , 2004 .
[61] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[62] K. Morgan,et al. Electromagnetic scattering simulation using an H(curl) conforming hp finite element method in three dimensions , 2007 .
[63] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.