Autonomic control of the eye.

The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia.

[1]  C. Riva,et al.  Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. , 2001, Investigative ophthalmology & visual science.

[2]  Q. Gu,et al.  Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity , 2002, Neuroscience.

[3]  K. Nishida,et al.  Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. , 2010, American journal of ophthalmology.

[4]  J. Polak,et al.  Neuropeptide y-immunoreactive nerves in the uvea of guinea pig and rat , 1983, Neuroscience Letters.

[5]  E. Muscholl,et al.  Muscarinic inhibition of [3H]‐noradrenaline release on rabbit iris in vitro: effects of stimulation conditions on intrinsic activity of methacholine and pilocarpine , 1988, British journal of pharmacology.

[6]  H. Knoll,et al.  Pupillary changes associated with accommodation and convergence. , 1949, American Journal of Optometry and Archives of American Academy of Optometry.

[7]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[8]  Falk Schrödl,et al.  Autonomic control of the eye and the iris , 2011, Autonomic Neuroscience.

[9]  A. Gaudric,et al.  Choroidal ischemia. , 1982, American journal of ophthalmology.

[10]  V. Fazan,et al.  Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: A link to cerebrovascular regulation , 2002, The Journal of comparative neurology.

[11]  Jun Lu,et al.  A Broad Role for Melanopsin in Nonvisual Photoreception , 2003, The Journal of Neuroscience.

[12]  F. Sundler,et al.  Pituitary adenylate cyclase-activating peptide-immunoreactive nerve fibers in the cat eye , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[13]  S. Nilsson,et al.  Non-adrenergic sympathetic vasoconstriction in the eye and some other facial tissues in the rabbit. , 1990, European journal of pharmacology.

[14]  M. Wiederholt,et al.  Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. , 1994, Investigative ophthalmology & visual science.

[15]  G. Ruskell The distribution of autonomic post-ganglionic nerve fibres to the lacrimal gland in monkeys. , 1971, Journal of anatomy.

[16]  G. Ruskell Accommodation and the nerve pathway to the ciliary muscle: a review , 1990, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[17]  Y. Zhang,et al.  Antidromic identification of midbrain near response cells projecting to the oculomotor nucleus , 2004, Experimental Brain Research.

[18]  B. Mayer,et al.  Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. , 1994, Investigative ophthalmology & visual science.

[19]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[20]  D. R. Anderson,et al.  Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. , 1983, Archives of ophthalmology.

[21]  M. Palkovits,et al.  Lacrimal preganglionic neurons form a subdivision of the superior salivatory nucleus of rat: transneuronal labelling by pseudorabies virus. , 1999, Journal of the autonomic nervous system.

[22]  W. Blessing,et al.  Preganglionic parasympathetic neurons projecting to the sphenopalatine ganglion contain nitric oxide synthase in the rabbit , 1997, Brain Research.

[23]  A. Reiner,et al.  Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. , 1999, Experimental eye research.

[24]  J. Nordmann,et al.  Combined therapy of pilocarpine or latanoprost with timolol versus latanoprost monotherapy. , 2002, Survey of ophthalmology.

[25]  H. Uusitalo,et al.  Vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the human and guinea-pig choroid. , 1984, Experimental eye research.

[26]  S. Skalicky The Iris and Pupil , 2016 .

[27]  N. Mizuno,et al.  Localization of neurons giving rise to the oculomotor parasympathetic outflow: A HRP study in cat , 1978, Neuroscience Letters.

[28]  F. Sundler,et al.  Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. , 1994, Experimental eye research.

[29]  N. Tsukahara,et al.  Physiological identification of midbrain neurons related to lens accommodation in cats. , 1984, Journal of neurophysiology.

[30]  A. Bill The Effect of Changes in Arterial Blood Pressure on the Rate of Aqueous Humour Formation in a Primate (Cercopithecus ethiops) , 1970 .

[31]  G. Krieglstein,et al.  The peripheral and central neural actions of clonidine in normal and glaucomatous eyes. , 1978, Investigative ophthalmology & visual science.

[32]  Paul D. Gamlin,et al.  Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation. , 1995, Journal of neurophysiology.

[33]  A. Reiner,et al.  Effect of choroidal and ciliary nerve transection on choroidal blood flow, retinal health, and ocular enlargement , 1993, Visual Neuroscience.

[34]  Rick S. Blum,et al.  Estimation of retinal oxygen transients from measurements made in the vitreous humor , 1981 .

[35]  J. Rohen,et al.  Short-term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and IOP changes in the albino rabbit. , 1996, Current eye research.

[36]  Paul D. Gamlin,et al.  Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey , 2004, Experimental Brain Research.

[37]  The activity of the ciliospinal centers and their inhibition in pupillary light reflex. , 1960, The Japanese journal of physiology.

[38]  J. Kiel,et al.  Relationship between ciliary blood flow and aqueous production in rabbits. , 2003, Investigative ophthalmology & visual science.

[39]  Takao Suzuki,et al.  Comparative anatomy of the accessory ciliary ganglion in mammals , 2004, Anatomy and Embryology.

[40]  Y. L. Grand,et al.  Optics of the Eye , 1980 .

[41]  Lisa A. Ostrin,et al.  Autonomic drugs and the accommodative system in rhesus monkeys. , 2010, Experimental eye research.

[42]  M. B. Bender,et al.  FUNCTIONAL REPRESENTATION IN THE OCULOMOTOR AND TROCHLEAR NUCLEI , 1943 .

[43]  H. Karten,et al.  Substance P-containing neurons of the avian suprachiasmatic nucleus project directly to the nucleus of Edinger-Westphal. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[44]  W. M. Wood-Vasey,et al.  The post illumination pupil response is reduced in seasonal affective disorder , 2013, Psychiatry Research.

[45]  R. Bannister,et al.  Methacholine pupillary responses in third nerve palsy and Adie's syndrome. , 1982, Brain : a journal of neurology.

[46]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[47]  P. Smith,et al.  Regional regulation of choroidal blood flow by autonomic innervation in the rat. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[48]  M. Nakai,et al.  The relevance of cardio-pulmonary-vascular reflex to regulation of the brain vessels. , 1984, The Japanese journal of physiology.

[49]  F. Campbell,et al.  Effect of Size of Pupil on Visual Acuity , 1960, Nature.

[50]  A. Jünemann,et al.  NADPH-D-reaktive chorioidale Ganglienzellen beim Menschen , 1993 .

[51]  S. Drance Regional optic nerve blood flow and its autoregulation , 1984 .

[52]  Leopold Schmetterer,et al.  Ocular blood flow , 2012 .

[53]  Paul D. Gamlin,et al.  The pupillary light reflex pathway of the primate. , 1995, Journal of the American Optometric Association.

[54]  A. Laties,et al.  Substance P-like immunoreactive nerves in the anterior segment of the rabbit, cat and monkey eye , 1982, Neuroscience.

[55]  A. Bergua,et al.  Vasoactive intestinal and calcitonin gene-related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. , 2003, Experimental eye research.

[56]  J. Kiel,et al.  Adrenergic modulation of choroidal blood flow in the rabbit. , 1996, Investigative ophthalmology & visual science.

[57]  E. Lütjen-Drecoll,et al.  Innervation of the porcine ciliary muscle and outflow region , 2005, Journal of anatomy.

[58]  K. N. Ogle,et al.  PUPILLARY RESPONSE TO FUSIONAL EYE MOVEMENTS. , 1964, American journal of ophthalmology.

[59]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Wildsoet,et al.  Endogenous rhythms in axial length and choroidal thickness in chicks: implications for ocular growth regulation. , 2001, Investigative ophthalmology & visual science.

[61]  A. Bill,et al.  Physiology of the choroidal vascular bed , 1983, International Ophthalmology.

[62]  D. Carpenter,et al.  Choroidal blood flow. III. Reflexive control in human eyes. , 1983, Archives of ophthalmology.

[63]  R. H. Collier Experimental embolic ischemia of the choroid. , 1967, Archives of ophthalmology.

[64]  S. W. Ranson,et al.  THE CENTRAL PATH OF THE LIGHT REFLEX: A STUDY OF THE EFFECT OF LESIONS , 1935 .

[65]  M. Costa,et al.  Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs , 1985, Neuroscience Letters.

[66]  R. Norgren,et al.  Central origins of cranial nerve parasympathetic neurons in the rat , 1980, The Journal of comparative neurology.

[67]  N. Tsukahara,et al.  The cerebellar control of accomodation of the eye in the cat , 1978, Brain Research.

[68]  S. Nilsson Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. , 1996, Investigative ophthalmology & visual science.

[69]  Kwoon Y. Wong,et al.  A Retinal Ganglion Cell That Can Signal Irradiance Continuously for 10 Hours , 2012, The Journal of Neuroscience.

[70]  J. Wallman,et al.  Developing eyes that lack accommodation grow to compensate for imposed defocus , 1990, Visual Neuroscience.

[71]  G. Breinin,et al.  Accommodation in monkeys induced by midbrain stimulation. , 1968, Investigative ophthalmology.

[72]  D. Jacobowitz,et al.  A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit , 1966, The Anatomical record.

[73]  T. Mauriala,et al.  Influence of tamsulosin on the iris and its implications for cataract surgery. , 2006, Investigative ophthalmology & visual science.

[74]  B. Petrig,et al.  Choroidal blood flow during isometric exercises. , 1997, Investigative ophthalmology & visual science.

[75]  R. Funk,et al.  Arteriovenous Anastomoses of the Episcleral Vasculature in the Rabbit and Rat Eye , 1998, Journal of glaucoma.

[76]  B. Baljet,et al.  Innervation of the lacrimal gland in the cynomolgous monkey: a retrograde tracing study. , 1996, Journal of anatomy.

[77]  S. Nilsson The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat. , 2000, Experimental eye research.

[78]  S. Nilsson,et al.  Uveoscleral outflow--a review. , 2009, Experimental eye research.

[79]  Paul D. Gamlin,et al.  The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex , 2010, Vision Research.

[80]  A. Bill,et al.  Control of retinal and choroidal blood flow , 1990, Eye.

[81]  Hiroyuki Sakai,et al.  Function of the pupil in vision and information capacity of retinal image , 2002, Systems and Computers in Japan.

[82]  Kwoon Y. Wong,et al.  Synaptic influences on rat ganglion‐cell photoreceptors , 2007, The Journal of physiology.

[83]  Ruskell Gl The orbital branches of the pterygopalatine ganglion and their relationship with internal carotid nerve branches in primates. , 1970 .

[84]  B. Ehinger Distribution of adrenergic nerves in the eye and some related structures in the cat. , 1966, Acta physiologica Scandinavica.

[85]  A. Bill,et al.  Vasomotor effects of facial nerve stimulation: noncholinergic vasodilation in the eye. , 1980, Acta physiologica Scandinavica.

[86]  A. Sillito,et al.  Nervous control of the eye , 2000 .

[87]  V. Skok,et al.  Natural electrical activity in mammalian parasympathetic ganglion neurones. , 1970, Brain research.

[88]  R. Stone,et al.  Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactivity. , 1987, Experimental eye research.

[89]  Lisa A. Ostrin,et al.  Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys. , 2007, Experimental eye research.

[90]  A. Bergua,et al.  Innervation pattern of the preocular human central retinal artery. , 2013, Experimental eye research.

[91]  Takamichi Inque The response of rabbit ciliary nerve to luminance intensity , 1980, Brain Research.

[92]  P. Kaufman,et al.  Association of a choroidal ganglion cell plexus with the fovea centralis. , 1994, Investigative ophthalmology & visual science.

[93]  G. K. Røste,et al.  Cerebellar cortical and nuclear afferents from the Edinger-Westphal nucleus in the cat , 2004, Anatomy and Embryology.

[94]  A. Bill,et al.  Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. , 1979, Investigative ophthalmology & visual science.

[95]  Glenn A. Fry,et al.  THE RELATION OF PUPIL SIZE TO ACCOMMODATION AND CONVERGENCE , 1945 .

[96]  S. Klyce,et al.  Alteration of corneal epithelial ion transport by sympathectomy. , 1985, Investigative Ophthalmology and Visual Science.

[97]  O. Oksala Effects of calcitonin gene-related peptide and substance P on regional blood flow in the cat eye. , 1988, Experimental eye research.

[98]  A. Bill,et al.  Effects of the substance P antagonist, (D-Arg1, D-Pro2, D-Trp7,9, Leu11)-SP on the miotic response to substance P, antidromic trigeminal nerve stimulation, capsaicin, prostaglandin E1, compound 48/80 and histamine. , 1984, Acta physiologica Scandinavica.

[99]  C. Marfurt,et al.  Peptidergic innervation of the rat cornea. , 1998, Experimental eye research.

[100]  J Linder,et al.  Sympathetic control of cerebral blood flow in acute arterial hypertension. , 1976, Acta physiologica Scandinavica.

[101]  Kikuro Fukushima,et al.  Discharge characteristics of pursuit neurons in MST during vergence eye movements. , 2005, Journal of neurophysiology.

[102]  F. Sundler,et al.  Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. , 1980, Investigative ophthalmology & visual science.

[103]  A. Hendrickson,et al.  Overlap of retinal and prestriate cortical pathways in the primate pretectum , 1983, Brain Research.

[104]  Duane D. Miller,et al.  Comparison of post-junctional α-adrenoceptors in iris dilator muscle of humans, and albino and pigmented rabbits , 1996, Naunyn-Schmiedeberg's Archives of Pharmacology.

[105]  L. Benevento,et al.  An autoradiographic study of the projections of the pretectum in the rhesus monkey (macaca mulatta): evidence for sensorimotor links to the thalamus and oculomotor nuclei , 1977, Brain Research.

[106]  N. Mizuno,et al.  Direct projections from the Ediger-Westphal nucleus to the cerebellum and spinal cord in the cat: An HRP study , 1978, Neuroscience Letters.

[107]  J. M. Butler,et al.  Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. , 1984, Experimental eye research.

[108]  S. Nilsson,et al.  Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. , 1985, Experimental eye research.

[109]  W. Neuhuber,et al.  Intrinsic neurons in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. , 2001, Experimental eye research.

[110]  A. Reiner,et al.  Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons , 1997, The Journal of comparative neurology.

[111]  N. Tsukahara,et al.  The mode of cerebellar control of pupillary light reflex. , 1973, Brain research.

[112]  J. Schlag,et al.  Determination of antidromic excitation by the collision test: Problems of interpretation , 1976, Brain Research.

[113]  Susana Marcos,et al.  The depth-of-field of the human eye from objective and subjective measurements , 1999, Vision Research.

[114]  J. Gloster,et al.  EFFECT OF DIENCEPHALIC STIMULATION UPON INTRA-OCULAR PRESSURE* , 1957, The British journal of ophthalmology.

[115]  C. Marfurt,et al.  Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. , 1989, Investigative ophthalmology & visual science.

[116]  F. Sundler,et al.  Substance P fibres in the anterior segment of the rabbit eye. , 1983, Acta physiologica Scandinavica.

[117]  A. Laties,et al.  Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. , 1998, Experimental eye research.

[118]  Tobi Delbruck,et al.  New Encyclopedia of Neuroscience , 2008 .

[119]  E. Lütjen-Drecoll,et al.  Immunohistochemical classification and functional morphology of human choroidal ganglion cells. , 2004, Investigative ophthalmology & visual science.

[120]  G. Ruskell,et al.  Peripheral nerve pathway to the ciliary muscle. , 1979, Experimental eye research.

[121]  A. Bill Effects of some neuropeptides on the uvea , 1991 .

[122]  Jenkins Tc ABERRATIONS OF THE EYE AND THEIR EFFECTS ON VISION. II. , 1963 .

[123]  Paul L. Kaufman,et al.  Production and Flow of Aqueous Humor , 2011 .

[124]  P. Kaufman,et al.  Prostaglandin F2 alpha increases uveoscleral outflow in the cynomolgus monkey. , 1989, Experimental eye research.

[125]  J. Klooster,et al.  Pre- and post-ganglionic nerve fibres of the pterygopalatine ganglion and their allocation to the eyeball of rats , 1990, Brain Research.

[126]  H. Thieme,et al.  Muscarinic receptors of the M2 subtype in human and bovine trabecular meshwork , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[127]  C. May Description and function of the ciliary nerves--some historical remarks on choroidal innervation. , 1997, Experimental eye research.

[128]  A. Tarkkanen,et al.  Vasoactive intestinal polypeptide‐like immunoreactive nerves to the human eye , 1986, Acta ophthalmologica.

[129]  L. Schmetterer,et al.  Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. , 2007, Investigative ophthalmology & visual science.

[130]  E. Lütjen-Drecoll,et al.  Efferent and afferent innervation of primate trabecular meshwork and scleral spur. , 2000, Investigative ophthalmology & visual science.

[131]  A. Reiner,et al.  Neural Control of Ocular Blood Flow , 2012 .

[132]  A. Miller,et al.  Substance P immunoreactive sensory nerves supply the rat iris and cornea , 1981, Neuroscience Letters.

[133]  P B Kruger,et al.  Infrared recording retinoscope for monitoring accomodation. , 1979, American journal of optometry and physiological optics.

[134]  Paul D. Gamlin,et al.  Interconnections between the primate cerebellum and midbrain near‐response regions , 1992, The Journal of comparative neurology.

[135]  J. Wallman,et al.  Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. , 1998, Experimental eye research.

[136]  R. Stone Vasoactive intestinal polypeptide and the ocular innervation. , 1986, Investigative ophthalmology & visual science.

[137]  J. T. O'neill,et al.  Nitric oxide modulation of retinal, choroidal, and anterior uveal blood flow in newborn piglets. , 1998, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[138]  George K. Hung,et al.  Static Behavior of Accommodation and Vergence: Computer Simulation of an Interactive Dual-Feedback System , 1980, IEEE Transactions on Biomedical Engineering.

[139]  J. Kiel,et al.  Episcleral venous pressure and IOP responses to central electrical stimulation in the rat. , 2013, Investigative ophthalmology & visual science.

[140]  D. Purves,et al.  Tonic and reflex synaptic activity recorded in ciliary ganglion cells of anaesthetized rabbits. , 1983, The Journal of physiology.

[141]  John L. Barbur,et al.  A Study of Pupil Response Components in Human Vision , 1995 .

[142]  J. Horton,et al.  Transneuronal retinal input to the primate Edinger‐Westphal nucleus , 1997, The Journal of comparative neurology.

[143]  J. T. Weber,et al.  The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis , 1980, Brain Research.

[144]  A. Alm,et al.  The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus) , 1977 .

[145]  G. Törnqvist,et al.  Effect of cervical sympathetic stimulation on accommodation in monkeys. An example of a beta-adrenergic, inhibitory effect. , 1966, Acta physiologica Scandinavica.

[146]  H. Uusitalo,et al.  The distribution and origin of substance P immunoreactive nerve fibres in the rat conjunctiva. , 1991, Experimental eye research.

[147]  A. Loewy,et al.  CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study , 1990, Brain Research.

[148]  W. Unger,et al.  Review: mediation of the ocular response to injury. , 1990, Journal of ocular pharmacology.

[149]  A. Gay,et al.  CHORIORETINAL VASCULAR OCCLUSIONS WITH LATEX SPHERES. , 1964, Investigative ophthalmology.

[150]  B. Hutchins Evidence for a direct retinal projection to the anterior pretectal nucleus in the cat , 1991, Brain Research.

[151]  J. Gallar,et al.  Stimulation of the cervical sympathetic nerves increases intraocular pressure. , 1993, Investigative ophthalmology & visual science.

[152]  K. Toyoshima,et al.  On the neuronal origin of the afferents to the ciliary ganglion in cat , 1980, Brain Research.

[153]  Paul D. Gamlin,et al.  Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: A laser Doppler study , 1996, Visual Neuroscience.

[154]  J. Ernest The effect of systolic hypertension on rhesus monkey eyes after ocular sympathectomy. , 1977, American journal of ophthalmology.

[155]  M. Cynader,et al.  Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography. , 1994, The British journal of ophthalmology.

[156]  L E Mays,et al.  Neural control of vergence eye movements: neurons encoding vergence velocity. , 1986, Journal of neurophysiology.

[157]  I. E. Loewenfeld,et al.  The Pupil: Anatomy, Physiology, and Clinical Applications , 1999 .

[158]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[159]  P. Holzer,et al.  Local effector functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides , 1988, Neuroscience.

[160]  G. Ruskell Trigeminal innervation of the scleral spur in cynomolgus monkeys. , 1994, Journal of anatomy.

[161]  J. Wallman,et al.  Changes in corneal curvature during accommodation in chicks , 1987, Vision Research.

[162]  Eugene Wolff,et al.  Wolff's anatomy of the eye and orbit , 1997 .

[163]  R. Kardon,et al.  Pupillary light reflex. , 1995, Current opinion in ophthalmology.

[164]  A. Bill,et al.  Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat, and rabbit. , 1979, Investigative ophthalmology & visual science.

[165]  R. Burde,et al.  Confirmatory evidence for a direct parasympathetic pathway to internal eye structures. , 1984, Transactions of the American Ophthalmological Society.

[166]  G. Ruskell Access of autonomic nerves through the optic canal, and their orbital distribution in man. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[167]  P. May,et al.  Comparison of the distributions of urocortin‐containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque , 2008, The Journal of comparative neurology.

[168]  Ernst R Tamm,et al.  The trabecular meshwork outflow pathways: structural and functional aspects. , 2009, Experimental eye research.

[169]  R. Stone,et al.  Substance P-like immunoreactive nerves in the human eye. , 1985, Archives of ophthalmology.

[170]  H. Asanuma,et al.  Modification of the projection from the sensory cortex to the motor cortex following the elimination of thalamic projections to the motor cortex in cats , 1985, Brain Research.

[171]  M. Alpern,et al.  Vergence and accommodation. V. Pupil size changes associated with changes in accommodative vergence. , 1961, American journal of ophthalmology.

[172]  T. Tervo,et al.  Innervation of the rabbit cornea , 1978 .

[173]  R. Clarke,et al.  Distribution of parasympathetic motoneurones in the oculomotor complex innervating the ciliary ganglion in the marmoset (Callithrix jacchus). , 1985, Acta anatomica.

[174]  A. Reiner,et al.  Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways controlling rodent choroidal blood flow , 2010, Brain Research.

[175]  A. Laties Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. , 1967, Archives of ophthalmology.

[176]  P. May,et al.  Organization of the extraocular and preganglionic motoneurons supplying the orbit in the lesser galago , 1993, The Anatomical record.

[177]  B. Ehinger A comparative study of the adrenergic nerves to the anterior eye segment of some primates , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[178]  F. Kruse,et al.  Corneal nerves: structure, contents and function. , 2003, Experimental eye research.

[179]  Andrew J. Zele,et al.  Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. , 2014, Investigative ophthalmology & visual science.

[180]  M. Af CIRCULATION IN THE EYE , 1883 .

[181]  Junzhong Liang,et al.  Aberrations and retinal image quality of the normal human eye. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[182]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[183]  A. Laties,et al.  Substance P-like immunoreactive nerve fibers in the trabecular meshwork. , 1981, Investigative ophthalmology & visual science.

[184]  A. Cuello,et al.  Immunoreactivity for substance P in the gasserian ganglion, ophthalmic nerve and anterior segment of the rabbit eye , 1981, The Histochemical Journal.

[185]  K. Akert,et al.  The Edinger-Westphal nucleus in the monkey. A retrograde tracer study , 1980, Brain Research.

[186]  J. Büttner-Ennever,et al.  Pretectal projections to the oculomotor complex of the monkey and their role in eye movements , 1996, The Journal of comparative neurology.

[187]  Miklós Palkovits,et al.  The Edinger‐Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology , 2011, The Journal of comparative neurology.

[188]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[189]  T. Tervo,et al.  Innervation of the rabbit cornea. A histochemical and electron-microscopic study. , 1978, Acta anatomica.

[190]  C. Wahlestedt,et al.  Neurogenic mechanisms in control of the rabbit iris sphincter muscle. , 1985, European journal of pharmacology.

[191]  J. Stjernschantz,et al.  Intraocular effects of substance P in the rabbit. , 1981, Investigative ophthalmology & visual science.

[192]  W. Stamer,et al.  Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. , 2014, Experimental eye research.

[193]  M. Wiederholt,et al.  Contractile response of the isolated trabecular meshwork and ciliary muscle to cholinergic and adrenergic agents. , 1996, German journal of ophthalmology.

[194]  R. Jampel,et al.  The nucleus for accommodation in the midbrain of the macaque. , 1967, Investigative ophthalmology.

[195]  C. W. Oyster The human eye: structure and function , 1999, Nature medicine.

[196]  B. Steinberg,et al.  Central control of intraocular pressure by active principles. , 1948, American journal of ophthalmology.

[197]  L Stark,et al.  Topology of the near response triad , 1990, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[198]  R. C. Hackmiller,et al.  M2-type muscarinic receptors mediate prejunctional inhibition of norepinephrine release in the human iris-ciliary body. , 1994, Experimental eye research.

[199]  A. Cuello,et al.  Substance P-immunoreactive nerves in the human cornea and iris. , 1982, Investigative ophthalmology & visual science.

[200]  I. Biaggioni,et al.  Primer on the Autonomic Nervous System: Second Edition , 2004 .

[201]  V. E. Pettorossi,et al.  Efferent fibers in the cervical sympathetic nerve influenced by light , 1976, Experimental Neurology.

[202]  N. Tsukahara,et al.  Cerebellar influence on parasympathetic neurones innervating intra-ocular muscles , 1978, Brain Research.

[203]  B. Petrig,et al.  Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. , 2003, Investigative ophthalmology & visual science.

[204]  P. Talke,et al.  Effect of dexmedetomidine, an α2‐adrenoceptor agonist, on human pupillary reflexes during general anaesthesia , 2001 .

[205]  N. Toda,et al.  Neurogenic vasoconstriction as affected by cholinergic and nitroxidergic nerves in dog ciliary and ophthalmic arteries. , 1999, Investigative ophthalmology & visual science.

[206]  R. Burde,et al.  Central origin of oculomotor parasympathetic neurons in the monkey , 1980, Brain Research.

[207]  Paul D. Gamlin,et al.  An area for vergence eye movement in primate frontal cortex , 2000, Nature.

[208]  S. W. Ranson,et al.  THE AFFERENT PATH OF THE LIGHT REFLEX: A REVIEW OF THE LITERATURE , 1935 .

[209]  R. Linsenmeier,et al.  Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia , 1992, The Journal of general physiology.

[210]  J. Olmsted THE ROLE OF THE AUTONOMIC NERVOUS SYSTEM IN ACCOMMODATION FOR FAR AND NEAR VISION , 1944 .

[211]  Y. Zhang,et al.  Characteristics of near response cells projecting to the oculomotor nucleus. , 1992, Journal of neurophysiology.

[212]  L. Voinea,et al.  The pterygopalatine ganglion in humans: a morphological study. , 2009, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[213]  A. Alm,et al.  The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. , 1973, Acta physiologica Scandinavica.

[214]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[215]  J. Pokorny,et al.  Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells , 2007, Vision Research.

[216]  J. M. Butler,et al.  Sensory neural mechanisms in contraction of the rabbit isolated sphincter pupillae: analysis of the responses to capsaicin and electrical field stimulation. , 1984, Experimental eye research.

[217]  F. Sundler,et al.  Neuropeptide Y immunoreactive neurons in the guinea-pig uvea and retina. , 1984, Investigative ophthalmology & visual science.

[218]  M. Hiraoka,et al.  The midbrain reticular formation as an integration center for the ‘near reflex’ in the cat , 1989, Neuroscience Research.

[219]  P. Kofuji,et al.  Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes , 2010, The Journal of Neuroscience.

[220]  E. Perkins,et al.  Influence of the Sympathetic Nervous System on the Intra-Ocular Pressure and Vascular Circulation of the Eye *† , 1952, The British journal of ophthalmology.

[221]  F. Scalia Retinal projections to the olivary pretectal nucleus in the tree shrew and comparison with the rat. , 1972, Brain, behavior and evolution.

[222]  A. Alm,et al.  The effect of stimulation of the cervical sympathetic chain on regional cerebral blood flow in monkeys. A study with radioactively labelled microspheres. , 1975, Acta physiologica Scandinavica.

[223]  M. Koss,et al.  Sympathetic vasoconstriction in the rat anterior choroid is mediated by alpha1-adrenoceptors. , 1998, European journal of pharmacology.

[224]  Glenn A. Fry,et al.  II The Optical Performance of the Human Eye , 1970 .

[225]  N. Tsukahara,et al.  The neuronal pathway subserving the pupillary light reflex and its facilitation from cerebellar nuclei. , 1973, Brain research.

[226]  C. Belmonte,et al.  Effects of stimulation of the ocular sympathetic nerves on IOP and aqueous humor flow. , 1987, Investigative ophthalmology & visual science.

[227]  J. Wisco,et al.  A Heat Map of Superior Cervical Ganglion Location Relative to the Common Carotid Artery Bifurcation , 2012, Anesthesia and analgesia.

[228]  Lisa A. Ostrin,et al.  Comparisons between pharmacologically and Edinger-Westphal-stimulated accommodation in rhesus monkeys. , 2005, Investigative ophthalmology & visual science.

[229]  Charles A Czeisler,et al.  Melanopsin and Rod–Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans , 2012, The Journal of Neuroscience.

[230]  F. Scalia,et al.  Topographic organization of the projections of the retina to the pretectal region in the rat , 1979, The Journal of comparative neurology.

[231]  B. Petrig,et al.  Iris blood flow response to acute decreases in ocular perfusion pressure: a laser Doppler flowmetry study in humans. , 2000, Experimental eye research.

[232]  Paul D. Gamlin,et al.  Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response , 1996, Experimental Brain Research.

[233]  J. T. Erichsen,et al.  Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger-Westphal nucleus. , 2008, Progress in brain research.

[234]  E. Tamm,et al.  Immunohistochemical localization of neuropeptides in the human ciliary ganglion , 1995, Brain Research.

[235]  A. Cowey,et al.  The effect of lesions to cortical areas V4 or AIT on pupillary responses to chromatic and achromatic stimuli in monkeys , 1998, Experimental Brain Research.

[236]  C. Melchiorre,et al.  Different muscarine receptors mediate the prejunctional inhibition of [3H]-noradrenaline release in rat or guinea-pig iris and the contraction of the rabbit iris sphincter muscle , 1989, Naunyn-Schmiedeberg's Archives of Pharmacology.

[237]  J. Kiel,et al.  Topical proparacaine and episcleral venous pressure in the rabbit. , 2009, Investigative ophthalmology & visual science.

[238]  K. Andersson,et al.  Nitric oxide synthase-containing neurons in rat parasympathetic, sympathetic and sensory ganglia: a comparative study , 2004, The Histochemical Journal.

[239]  L E Mays,et al.  Behavior of identified Edinger-Westphal neurons during ocular accommodation. , 1994, Journal of neurophysiology.

[240]  W. Blessing,et al.  Preganglionic parasympathetic salivatory neurons in the brainstem contain markers for nitric oxide synthesis in the rabbit , 1996, Neuroscience Letters.

[241]  Paul L. Kaufman,et al.  Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode , 1989, Brain Research.

[242]  L E Mays,et al.  Neural control of vergence eye movements: activity of abducens and oculomotor neurons. , 1984, Journal of neurophysiology.

[243]  C. M. Severin,et al.  The superior and inferior salivatory nuclei in the rat , 1981, Neuroscience Letters.

[244]  R. Weller,et al.  Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys , 1993, Visual Neuroscience.

[245]  A. Bill,et al.  Effects of NG‐nitro‐l‐arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin‐releasing hormone , 1993, British journal of pharmacology.

[246]  M. Koss,et al.  Pupillary dilation as an index of central nervous system alpha 2-adrenoceptor activation. , 1986, Journal of pharmacological methods.

[247]  Michael Bass,et al.  Handbook of optics , 1995 .

[248]  J. Polansky,et al.  Adrenergic and cholinergic receptors in isolated non-pigmented ciliary epithelial cells. , 1985, Current eye research.

[249]  Josh Wallman,et al.  The multifunctional choroid , 2010, Progress in Retinal and Eye Research.

[250]  R. Brubaker,et al.  Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. , 1980, Investigative ophthalmology & visual science.

[251]  R. Stone,et al.  Peptide immunoreactivity of the ciliary ganglion and its accessory cells in the rat , 1988, Brain Research.

[252]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[253]  D. Cantino,et al.  Autonomic innervation of the ocular choroid membrane in the chicken , 2004, Cell and Tissue Research.

[254]  C. Saper,et al.  Edinger-Westphal nucleus: Projections to the brain stem and spinal cord in the cat , 1978, Brain Research.

[255]  A. Bill Early effects of epinephrine on aqueous humor dynamics in vervet monkeys (Cercopithecus ethiops). , 1969, Experimental eye research.

[256]  Mirjam Münch,et al.  Intrinsically photosensitive retinal ganglion cells: classification, function and clinical implications. , 2013, Current opinion in neurology.

[257]  P. Guyenet The sympathetic control of blood pressure , 2006, Nature Reviews Neuroscience.

[258]  G Westheimer,et al.  Pupil size and visual resolution. , 1964, Vision research.

[259]  B. Ehinger Adrenergic Nerves to the Eye and to Related Structures in Man and in the Cynomolgus Monkey (Macaca Irus) , 1966 .

[260]  Andrew J. Zele,et al.  The post‐illumination pupil response of melanopsin‐expressing intrinsically photosensitive retinal ganglion cells in diabetes , 2012, Acta ophthalmologica.

[261]  B. Petrig,et al.  Blood flow in the human optic nerve head during isometric exercise. , 1998, Experimental eye research.

[262]  P. Grimes,et al.  Adrenergic innervation of the choroid and iris in diabetic rats. , 1993, Current eye research.

[263]  O. Lowenstein The Argyll Robertson pupillary syndrome; mechanism and localization. , 1956, American journal of ophthalmology.

[264]  A. Laties,et al.  Peptidergic innervation of the retinal vasculature and optic nerve head. , 1990, Investigative ophthalmology & visual science.

[265]  E MARG,et al.  The pupillary near reflex; the relation of pupillary diameter to accommodation and the various components of convergence. , 1949, American journal of optometry and archives of American Academy of Optometry.

[266]  Eiji Kimura,et al.  Sustained pupillary constrictions mediated by an L- and M-cone opponent process , 2010, Vision Research.

[267]  E. Marg,et al.  Accommodative response of the eye to electrical stimulation of the ciliary ganglion in cats. , 1954, American journal of optometry and archives of American Academy of Optometry.

[268]  G. Burnstock,et al.  Long-term chemical sympathectomy leads to an increase of neuropeptide Y immunoreactivity in cerebrovascular nerves and iris of the developing rat , 1990, Neuroscience.

[269]  B. Gilmartin A REVIEW OF THE ROLE OF SYMPATHETIC INNERVATION OF THE CILIARY MUSCLE IN OCULAR ACCOMMODATION , 1986, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[270]  T Usui,et al.  Accommodative and pupillary responses to sinusoidal target depth movement , 1993, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[271]  Otto Appenzeller Primer on the Autonomic Nervous System Edited by David Robertson, Phillip A. Low and Ronald J. Polinsky, Academic Press, 1996. HB £59.00; PB £29.00 (xv + 343 pages) ISBN HB 0 12 589760 X; PB 0 12 589761 8 , 1997, Trends in Neurosciences.

[272]  D. Berson,et al.  Strange vision: ganglion cells as circadian photoreceptors , 2003 .

[273]  G. Pilar,et al.  Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[274]  D. Carpenter,et al.  Choroidal blood flow II. Reflexive control in the monkey. , 1982, Archives of ophthalmology.

[275]  M. LeDoux,et al.  Parasympathetic innervation of the meibomian glands in rats. , 2001, Investigative ophthalmology & visual science.

[276]  H Zhang,et al.  Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. , 1998, Journal of neurophysiology.

[277]  G. K. Smelser,et al.  The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. , 1974, Investigative ophthalmology.

[278]  Anand C. Joshi,et al.  Muscimol inactivation of caudal fastigial nucleus and posterior interposed nucleus in monkeys with strabismus. , 2013, Journal of neurophysiology.

[279]  F. W. Campbell,et al.  The role of the pupil light reflex in aiding adaptation to the dark , 1975, Vision Research.

[280]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[281]  Paul D. Gamlin Subcortical neural circuits for ocular accommodation and vergence in primates , 1999, Ophthalmic & physiological optics.

[282]  N. Berman,et al.  Connections of the pretectum in the cat , 1977, The Journal of comparative neurology.

[283]  R. Warwick,et al.  The ocular parasympathetic nerve supply and its mesencephalic sources. , 1954, Journal of Anatomy.

[284]  Y. Shimizu Localization of neuropeptides in the cornea and uvea of the rat: an immunohistochemical study. , 1982, Cellular and molecular biology.

[285]  Kwoon Y. Wong,et al.  Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[286]  Angus M'Gillivray,et al.  The Ocular Circulation , 1904, Edinburgh Medical Journal.

[287]  M. Tamai,et al.  Two types of vasodilatation in cat choroid elicited by electrical stimulation of the short ciliary nerve. , 1995, Experimental eye research.

[288]  S. Nilsson Neuropeptide Y (NPY): a vasoconstrictor in the eye, brain and other tissues in the rabbit. , 1991, Acta physiologica Scandinavica.

[289]  K. Hoffmann,et al.  Retinal projection to the nucleus of the optic tract in the cat as revealed by retrograde transport of horseradish peroxidase , 1981, Neuroscience Letters.

[290]  F. A. Miles,et al.  Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. , 2001, Journal of neurophysiology.

[291]  Ruskell Gl Ocular fibres of the maxillary nerve in monkeys. , 1974 .

[292]  A. Reiner,et al.  Distribution within the choroid of cholinergic nerve fibers from the ciliary ganglion in pigeons , 1996, Vision Research.

[293]  G Westheimer,et al.  The parasympathetic pathways to internal eye muscles. , 1973, Investigative ophthalmology.

[294]  R. Lund,et al.  The anatomical substrates subserving the pupillary light reflex in rats: Origin of the consensual pupillary response , 1994, Neuroscience.

[295]  S. Nilsson,et al.  Control of Ocular Blood Flow , 1985, Journal of cardiovascular pharmacology.

[296]  R. Gubisch,et al.  Optical Performance of the Human Eye , 1967 .

[297]  A. Reiner,et al.  Role of muscarinic cholinergic transmission in Edinger-Westphal nucleus-induced choroidal vasodilation in pigeon. , 2000, Experimental eye research.

[298]  T. Wanko,et al.  Some mechanisms of centrally induced eye pressure responses. , 1956, American journal of ophthalmology.

[299]  J. Büttner-Ennever,et al.  Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase , 1979, Brain Research.

[300]  S. W. Ranson,et al.  THE AFFERENT PATH OF THE PUPILLARY LIGHT REFLEX IN THE MONKEY , 1936 .

[301]  A. Reiner,et al.  Localization of preganglionic neurons that innervate choroidal neurons of pterygopalatine ganglion. , 2003, Investigative ophthalmology & visual science.

[302]  John Semmlow,et al.  The synkinetic interaction of convergence accommodation and accommodative convergence , 1979, Vision Research.

[303]  A. Sillito,et al.  The activity characteristics of the preganglionic pupilloconstrictor neurones , 1970, The Journal of physiology.

[304]  S. W. Ranson,et al.  THE CENTRAL PATH OF THE PUPILLOCONSTRICTOR REFLEX IN RESPONSE TO LIGHT , 1933 .

[305]  The origin of extrinsic nitrergic axons supplying the human eye , 2005, Journal of anatomy.

[306]  L. Schmetterer,et al.  Unilateral light–dark transitions affect choroidal blood flow in both eyes , 2001, Vision Research.

[307]  S. Ishikawa,et al.  The center for controlling the near reflex in the midbrain of the monkey: A double labelling study , 1990, Brain Research.

[308]  J. T. Erichsen,et al.  The neural substrate for the pupillary light reflex in the pigeon (Columba livia) , 1984, The Journal of comparative neurology.

[309]  S. Laughlin Retinal information capacity and the function of the pupil , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[310]  P. Talke,et al.  Effect of dexmedetomidine, an alpha2-adrenoceptor agonist, on human pupillary reflexes during general anaesthesia. , 2001, British journal of clinical pharmacology.

[311]  M. Carpenter,et al.  Accessory oculomotor nuclei in the monkey. , 1970, Journal fur Hirnforschung.

[312]  O. Candia,et al.  Adreno-cholinergic modulation of junctional communications between the pigmented and nonpigmented layers of the ciliary body epithelium. , 1996, Investigative ophthalmology & visual science.

[313]  Benedetto Falsini,et al.  Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. , 2002, Investigative ophthalmology & visual science.

[314]  N. Toda,et al.  Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. , 1996, Investigative ophthalmology & visual science.

[315]  M. Carpenter,et al.  Anatomical analysis of pupillary reflex pathways in the rhesus monkey , 1974, The Journal of comparative neurology.

[316]  J Schwiegerling,et al.  Theoretical limits to visual performance. , 2000, Survey of ophthalmology.

[317]  J. Pérez-León,et al.  Synaptic inputs to retinal ganglion cells that set the circadian clock , 2006, The European journal of neuroscience.

[318]  B. Park Anatomy and Physiology of the Autonomic Nervous System , 2017 .

[319]  J. Klooster,et al.  The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. II. The sympathetic innervation , 1989, Brain Research.

[320]  G. Ruskell Facial parasympathetic innervation of the choroidal blood vessels in monkeys. , 1971, Experimental eye research.

[321]  S. Nakagawa,et al.  Localization of preganglionic neurons of the accessory ciliary ganglion in the midbrain: HRP and WGA‐HRP studies in the cat , 1994, The Journal of comparative neurology.

[322]  A. Bill Some aspects of the ocular circulation. Friedenwald lecture. , 1985, Investigative ophthalmology & visual science.

[323]  F. Lui,et al.  Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey , 1995, The Journal of comparative neurology.

[324]  P. Kaufman,et al.  Prostaglandin F2α increases uveoscleral outflow in the cynomolgus monkey , 1989 .

[325]  Paul D. Gamlin The pretectum: connections and oculomotor-related roles. , 2006, Progress in brain research.

[326]  M. Stakenburg Accommodation without pupillary constriction , 1991, Vision Research.

[327]  J. Klooster,et al.  Sympathetic innervation of the rat choroid: an autoradiographic tracing and immunohistochemical study. , 1996, Ophthalmic research.

[328]  Adrian Glasser,et al.  Dynamic accommodation in rhesus monkeys , 2002, Vision Research.

[329]  R. Stone,et al.  Calcitonin gene-related peptide immunoreactive nerves in human and rhesus monkey eyes. , 1988, Investigative ophthalmology & visual science.

[330]  F. Mitchelson Muscarinic receptor agonists and antagonists: effects on ocular function. , 2012, Handbook of experimental pharmacology.

[331]  R. Lee,et al.  Aqueous Humor Dynamics: A Review , 2010, The open ophthalmology journal.

[332]  C. Owman,et al.  Trigeminal fibre collaterals storing substance P and calcitonin gene-related peptide associate with ganglion cells containing choline acetyltransferase and vasoactive intestinal polypeptide in the sphenopalatine ganglion of the rat. An axon reflex modulating parasympathetic ganglionic activity? , 1989, Neuroscience.

[333]  I. Gibbins,et al.  Co-existence of neuropeptides in sympathetic, cranial autonomic and sensory neurons innervating the iris of the guinea-pig. , 1987, Journal of the autonomic nervous system.

[334]  T. Jacob,et al.  Functional coupling in bovine ciliary epithelial cells is modulated by carbachol. , 1997, The American journal of physiology.

[335]  Adrian Glasser,et al.  Characteristics of pupil responses during far‐to‐near and near‐to‐far accommodation , 2005, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[336]  Paul D. Gamlin,et al.  Post-illumination pupil response in subjects without ocular disease. , 2010, Investigative ophthalmology & visual science.

[337]  A. Cowey,et al.  Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey , 1984, Neuroscience.

[338]  Paul D. Gamlin,et al.  Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons. , 2003, Journal of neurophysiology.

[339]  Mingguang He,et al.  Iris Cross-sectional Area Decreases With Pupil Dilation and its Dynamic Behavior is a Risk Factor in Angle Closure , 2009, Journal of glaucoma.

[340]  T. Tervo,et al.  Histochemical demonstration of adrenergic nerves in the stroma of human cornea. , 1987, Investigative ophthalmology & visual science.

[341]  G. Törnqvist The relative importance of the parasympathetic and sympathetic nervous systems for accommodation in monkeys. , 1967, Investigative ophthalmology.

[342]  A. Bill,et al.  Electrical stimulation of the fifth cranial nerve in rabbits: effects on ocular blood flow, extravascular albumin content and intraocular pressure. , 1979, Experimental eye research.

[343]  A. Loewy,et al.  CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study , 1992, Brain Research.

[344]  E. Lütjen-Drecoll Choroidal innervation in primate eyes. , 2006, Experimental eye research.

[345]  Lawrence E Mays,et al.  Neuronal circuitry controlling the near response , 1995, Current Opinion in Neurobiology.

[346]  A. Shekhar,et al.  Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. , 2012, Investigative ophthalmology & visual science.

[347]  William N. Charman Optics of the Eye , 1995 .

[348]  J. Rohen,et al.  Angioarchitecture and Innervation of the Primate Anterior Episclera , 2005, Current eye research.

[349]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[350]  A. Alm,et al.  Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: modification by indomethacin. , 1976, Experimental eye research.

[351]  I. Grković,et al.  Chemically distinct preganglionic inputs to iris‐projecting postganglionic neurons in the rat: A light and electron microscopic study , 1999, The Journal of comparative neurology.

[352]  N. Toda,et al.  Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. , 1993, Circulation research.

[353]  P. Emson,et al.  Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis , 1985, Brain Research.

[354]  R. Eglen,et al.  Muscarinic receptor subtypes and smooth muscle function. , 1996, Pharmacological reviews.

[355]  M. Wiederholt,et al.  Regulation of outflow rate and resistance in the perfused anterior segment of the bovine eye. , 1995, Experimental Eye Research.

[356]  M. Koss,et al.  Alpha2-adrenoceptors do not mediate reflex mydriasis in rabbits. , 2004, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[357]  R. W. Rodieck,et al.  The retinal projection to the cat pretectum , 1985, The Journal of comparative neurology.

[358]  H. Uusitalo,et al.  Calcitonin gene-related peptide (CGRP) immunoreactive sensory nerves in the human and guinea pig uvea and cornea. , 1989, Experimental eye research.

[359]  W. Neuhuber,et al.  Intrinsic choroidal neurons in the duck eye express galanin , 2000, The Journal of comparative neurology.

[360]  Paul D. Gamlin,et al.  Characteristics of the pupillary light reflex in the alert rhesus monkey. , 2003, Journal of neurophysiology.

[361]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .

[362]  B. Gilmartin,et al.  Absence of pupil response to blur-driven accommodation , 1992, Vision Research.

[363]  S. E. Andersson Responses to antidromic trigeminal nerve stimulation, substance P, NKA, CGRP and capsaicin in the rat eye. , 1987, Acta physiologica Scandinavica.

[364]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[365]  J. Klooster,et al.  New indirect pathways subserving the pupillary light reflex: projections of the accessory oculomotor nuclei and the periaqueductal gray to the Edinger-Westphal nucleus and the thoracic spinal cord in rats , 1998, Anatomy and Embryology.

[366]  H. Uusitalo,et al.  Vasoactive intestinal polypeptide (VIP)-immunoreactive nerve fibers in the anterior uvea of the guinea pig. , 1985, Ophthalmic Research.

[367]  Paul D. Gamlin Neural Mechanisms for the Control of Vergence Eye Movements , 2002, Annals of the New York Academy of Sciences.

[368]  A. Deussen,et al.  L-arginine-derived nitric oxide: a major determinant of uveal blood flow. , 1993, Experimental eye research.

[369]  A. Sillito,et al.  The localization of pupilloconstrictor function within the mid‐brain of the cat , 1970, The Journal of physiology.

[370]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[371]  J. M. Butler,et al.  Distribution and origin of calcitonin gene‐related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye , 1985, The Journal of comparative neurology.

[372]  C. Maggi,et al.  In vivo pupillary constrictor effects of substance P in man. , 1991, Life sciences.

[373]  R M Burde,et al.  THE PUPIL , 1967, International ophthalmology clinics.

[374]  F. Scalia The termination of retinal axons in the pretectal region of mammals , 1972, The Journal of comparative neurology.

[375]  S. Snyder,et al.  The localization of nitric oxide synthase in the rat eye and related cranial ganglia , 1993, Neuroscience.

[376]  Paul D. Gamlin,et al.  The edinger‐westphal nucleus: Sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow , 1991, The Journal of comparative neurology.

[377]  G. Leichnetz,et al.  Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor-related structures in the rhesus monkey , 1990, Visual Neuroscience.

[378]  K. Yau,et al.  Non-image-forming ocular photoreception in vertebrates , 2005, Current Opinion in Neurobiology.

[379]  R. Goris,et al.  Substance P-like immunoreactivity in the central retinal artery of the rabbit. , 1988, Experimental eye research.

[380]  A. Laties,et al.  Regulatory peptides in the eye , 1987, Experientia.

[381]  C. Saper,et al.  Hypothalamic regulation of sleep and circadian rhythms , 2005, Nature.

[382]  N. Tsukahara,et al.  The cerebellar control of the pupillary light reflex in the cat , 1977, Brain Research.

[383]  Paul D. Gamlin,et al.  The role of cerebro-ponto-cerebellar pathways in the control of vergence eye movements , 1996, Eye.

[384]  H. Ripps,et al.  Accommodation in the cat. , 1961, Transactions of the American Ophthalmological Society.

[385]  W. Chambers,et al.  Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). , 1956, Journal of anatomy.

[386]  K. Hoffmann,et al.  The pupillary light reflex in normal and innate microstrabismic cats, II: Retinal and cortical input to the nucleus praetectalis olivaris , 1989, Visual Neuroscience.

[387]  A. Graybiel,et al.  Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. , 1974, Brain research.

[388]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[389]  T. Reid,et al.  Substance P and the eye , 1995, Progress in Retinal and Eye Research.

[390]  Donald C. Hood,et al.  Sensitivity to Light , 1986 .

[391]  S. Judge,et al.  Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. , 1986, Journal of neurophysiology.

[392]  Bin Wang,et al.  Depth-of-focus of the human eye: theory and clinical implications. , 2006, Survey of ophthalmology.

[393]  G. Ruskell The orbital branches of the pterygopalatine ganglion and their relationship with internal carotid nerve branches in primates. , 1970, Journal of anatomy.

[394]  J. Büttner-Ennever,et al.  Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: Reappraisal of the Edinger‐Westphal nucleus , 2008, The Journal of comparative neurology.

[395]  C. Morgan,et al.  Sympathetic innervation of the cornea from the superior cervical ganglion. An HRP study in the cat. , 1987, Journal of the autonomic nervous system.

[396]  J. Klooster,et al.  Substance P in rat corneal and iridal nerves: an ultrastructural immunohistochemical study. , 1993, Ophthalmic research.

[397]  R. Burde,et al.  Lack of unity of Edinger-Westpal nucleus projections to the ciliary ganglion and spinal cord: a double-labeling approach , 1982, Brain Research.

[398]  J. T. Weber,et al.  The pretectal complex of the monkey: A reinvestigation of the morphology and retinal terminations , 1985, The Journal of comparative neurology.

[399]  J. Kiel,et al.  Ciliary blood flow and aqueous humor production , 2011, Progress in Retinal and Eye Research.

[400]  J. Klooster,et al.  Peripheral neural circuits regulating IOP? , 1994, Documenta Ophthalmologica.

[401]  R. Jaeger,et al.  A horseradish peroxidase study of the innervation of the internal structures of the eye. Evidence for a direct pathway. , 1980, Investigative ophthalmology & visual science.

[402]  G. Ruskell An ocular parasympathetic nerve pathway of facial nerve origin and its influence on intraocular pressure. , 1970, Experimental eye research.

[403]  A. Reiner,et al.  Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser Doppler study. , 1990, Investigative ophthalmology & visual science.

[404]  P. May,et al.  Ultrastructure of the macaque ciliary ganglion , 1993, Journal of neurocytology.

[405]  R. Uusitalo Effect of sympathetic and parasympathetic stimulation on the secretion and outflow of aqueous humour in the rabbit eye. , 1972, Acta physiologica Scandinavica.

[406]  J. M. Butler,et al.  Mapping, quantitative distribution and origin of substance P- and VIP-containing nerves in the Uvea of guinea pig eye , 2004, Histochemistry.

[407]  B. Petrig,et al.  Effect of decreased ocular perfusion pressure on blood flow and the flicker-induced flow response in the cat optic nerve head. , 1996, Microvascular research.

[408]  E. Woldemussie,et al.  Muscarinic receptor subtypes in human iris-ciliary body measured by immunoprecipitation. , 1997, Investigative ophthalmology & visual science.

[409]  A. Jünemann,et al.  [NADPH-D reactive choroid ganglion cells in the human]. , 1993, Klinische Monatsblatter fur Augenheilkunde.

[410]  CLIFTON M. SCHOR Graphical Analysis of Prism Adaptation, Convergence Accommodation, and Accommodative Convergence , 1982, American journal of optometry and physiological optics.

[411]  S. Boehm,et al.  Fine Tuning of Sympathetic Transmitter Release via Ionotropic and Metabotropic Presynaptic Receptors , 2002, Pharmacological Reviews.

[412]  T. Hökfelt,et al.  Appearance of the noradrenergic markers tyrosine hydroxylase and neuropeptide Y in cholinergic nerves of the iris following sympathectomy , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[413]  M. Nakai,et al.  Parasympathetic cerebrovasodilator center of the facial nerve. , 1993, Circulation research.

[414]  R. Page,et al.  Optic nerve blood flow and its regulation. , 1982, Investigative ophthalmology & visual science.

[415]  M. Koss Pupillary dilation as an index of central nervous system α2-adrenoceptor activation , 1986 .

[416]  M. Tamai,et al.  Increased and decreased choroidal blood flow elicited by cervical sympathetic nerve stimulation in the cat. , 1995, The Japanese journal of physiology.

[417]  O. Oksala,et al.  Increase in outflow facility of aqueous humor in cats induced by calcitonin gene-related peptide. , 1988, Experimental eye research.

[418]  Robert Cohn,et al.  Integrative control functions of the brain , 1980 .

[419]  E MARG,et al.  Further investigation of the pupillary near reflex; the effect of accommodation, fusional convergence and the proximity factor on pupillary diameter. , 1950, American Journal of Optometry and Archives of American Academy of Optometry.

[420]  J. Demer,et al.  Nonvascular contractile cells in sclera and choroid of humans and monkeys. , 1998, Investigative ophthalmology & visual science.

[421]  J. Timmermans,et al.  Intrinsic choroidal neurons in the human eye: projections, targets, and basic electrophysiological data. , 2003, Investigative ophthalmology & visual science.

[422]  H. Ikeda,et al.  Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat , 2004, Experimental Brain Research.