A 10-b Ternary SAR ADC With Quantization Time Information Utilization

The design of a ternary successive approximation (TSAR) analog-to-digital converter (ADC) with quantization time information utilization is proposed. The TSAR examines the transient information of a typical dynamic SAR voltage comparator to provide accuracy, speed, and power benefits. Full half-bit redundancy is shown, allowing for residue shaping which provides an additional 6 dB of signal-to-quantization-noise ratio (SQNR). Synchronous quantizer speed enhancements allow for a shorter worst case conversion time. An increased monotonicity switching algorithm, stage skipping due to reference grouping, and SAR logic modifications minimize overall dynamic energy. The architecture has been shown to reduce capacitor array switching power consumption and digital-to-analog converter (DAC) driver power by about 60% in a mismatch limited SAR, reduce comparator activity by about 20%, and require only 8.03 average comparisons and 6.53 average DAC movements for a 10-b ADC output word. A prototype is fabricated in 0.13-μm CMOS employing on-chip statistical time reference calibration, supply variability from 0.8 to 1.2 V, and small input signal power scaling. The chip consumes 84 μ W at 8 MHz with an effective number of bits of 9.3 for a figure of merit of 16.9 fJ/C-S for the 10-b prototype and 10.0 fJ/C-S for a 12-b enhanced prototype chip.

[1]  Chung-Ming Huang,et al.  A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[2]  Kristofer S. J. Pister,et al.  An ultralow-energy ADC for Smart Dust , 2003, IEEE J. Solid State Circuits.

[3]  P.G.A. Jespers,et al.  A CMOS 13-b cyclic RSD A/D converter , 1992, IEEE Journal of Solid-State Circuits.

[4]  Sang-Hyun Cho,et al.  A 550µW 10b 40MS/s SAR ADC with multistep addition-only digital error correction , 2010, IEEE Custom Integrated Circuits Conference 2010.

[5]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[6]  Stephen H. Lewis,et al.  A 10-b 20-Msample/s analog-to-digital converter , 1992 .

[7]  R.W. Brodersen,et al.  A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-$\mu{\hbox{m}}$ CMOS , 2006, IEEE Journal of Solid-State Circuits.

[8]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[9]  Pierluigi Nuzzo,et al.  Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Un-Ku Moon,et al.  A 10b Ternary SAR ADC with decision time quantization based redundancy , 2011, IEEE Asian Solid-State Circuits Conference 2011.

[11]  Sang-Hyun Cho,et al.  A 550-$\mu\hbox{W}$ 10-b 40-MS/s SAR ADC With Multistep Addition-Only Digital Error Correction , 2011, IEEE Journal of Solid-State Circuits.

[12]  Bernard C. Levy A Propagation Analysis of Residual Distributions in Pipeline ADCs , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Christer Svensson,et al.  High-speed CMOS circuit technique , 1989 .

[14]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.

[15]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[16]  Un-Ku Moon,et al.  The Analysis and Application of Redundant Multistage ADC Resolution Improvements Through PDF Residue Shaping , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  P. Gray,et al.  All-MOS charge redistribution analog-to-digital conversion techniques. I , 1975, IEEE Journal of Solid-State Circuits.

[19]  Robert W. Brodersen,et al.  A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing , 2010, IEEE Journal of Solid-State Circuits.

[20]  Michael C. W. Coln,et al.  All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Jaeha Kim,et al.  Simulation and Analysis of Random Decision Errors in Clocked Comparators , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Franco Maloberti,et al.  A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[23]  Jon Guerber,et al.  Merged capacitor switching based SAR ADC with highest switching energy-efficiency , 2010 .

[24]  Franco Maloberti,et al.  A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[25]  Tadahiro Kuroda,et al.  A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[26]  Jae-Yoon Sim,et al.  A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface , 2011, IEEE Journal of Solid-State Circuits.

[27]  Mohamed Dessouky,et al.  Very low-voltage digital-audio /spl Delta//spl Sigma/ modulator with 88-dB dynamic range using local switch bootstrapping , 2001 .

[28]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.