Stochastic Collocation Algorithms Using l1-Minimization for Bayesian Solution of Inverse Problems

The Bayesian methodology has proven to be a convenient framework to solve inverse problems from available data with limited information. The main computational challenges in the Bayesian solution of inverse problems arise from the need for repeated evaluations of the forward model, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. In this paper, we present an efficient technique for constructing stochastic surrogate models to accelerate the Bayesian inference approach for statistical inverse problems. The stochastic collocation algorithms using $l_1$-minimization (L1-SCM), based on generalized polynomial chaos, are used to construct a polynomial approximation of the forward solution over the support of the prior distribution. This approximation then defines a surrogate posterior probability density that is inexpensive to evaluate. A rigorous error analysis shows that the convergence rate of the posterior density is at least twice as fast as the convergence rate of the gPC expa...

[1]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[2]  Panos G. Georgopoulos,et al.  Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[5]  P. Stark Inverse problems as statistics , 2002 .

[6]  Tao Zhou,et al.  On Sparse Interpolation and the Design of Deterministic Interpolation Points , 2013, SIAM J. Sci. Comput..

[7]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[8]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[9]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[10]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[11]  Bangti Jin,et al.  Fast Bayesian approach for parameter estimation , 2008 .

[12]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[13]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[14]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[15]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[16]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[17]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[18]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[19]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[20]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[21]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[22]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[23]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[24]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[25]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[26]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[27]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[28]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[29]  D. Lucor,et al.  Adaptive Bayesian Inference for Discontinuous Inverse Problems, Application to Hyperbolic Conservation Laws , 2014 .

[30]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[31]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[32]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[33]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[34]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[35]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[36]  Kyle A. Gallivan,et al.  A compressed sensing approach for partial differential equations with random input data , 2012 .

[37]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[38]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[39]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[40]  Nicholas Zabaras,et al.  An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .

[41]  AbdoulAhad Validi,et al.  Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference , 2013, J. Comput. Phys..

[42]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[43]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..