Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes

Abstract Mechanical properties of long multi-walled CNT ropes prepared using the floating catalyst chemical vapour deposition method were tested, obtaining an average tensile strength and Young’s modulus of 210 MPa and 2.2 GPa, respectively. Furthermore, the ropes showed excellent NH 3 detecting sensitivity at both high and low NH 3 concentrations. Increasing the temperature, NH 3 desorbed from the ropes, indicating an exothermal absorption reaction.

[1]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[2]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[3]  Byeong Kwon Ju,et al.  A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes , 2004 .

[4]  G. Grüner,et al.  Charge transfer from ammonia physisorbed on nanotubes. , 2003, Physical review letters.

[5]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[6]  M. Dresselhaus,et al.  Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes , 2000 .

[7]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[8]  Jae Do Lee,et al.  Adsorption of NH3 and NO2 molecules on carbon nanotubes , 2001 .

[9]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[10]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[11]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[12]  S. R. Silva,et al.  Dendrimer assisted catalytic growth of mats of multiwall carbon nanofibers , 2005 .

[13]  M. Radosavljevic,et al.  Transport properties of a potassium-doped single-wall carbon nanotube rope , 2000 .

[14]  P. Ajayan,et al.  Self-organized Ribbons of Aligned Carbon Nanotubes , 2002 .

[15]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[16]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[17]  C. Bauschlicher,et al.  Binding of N H 3 to graphite and to a (9,0) carbon nanotube , 2004 .

[18]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[19]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[20]  F. C. Marques,et al.  Effects of applying stress on the electron field emission properties in amorphous carbon thin films , 2005 .

[21]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[22]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[23]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[24]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[25]  Jose Maria Kenny,et al.  Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films , 2003 .

[26]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[27]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[28]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles. , 2003 .

[29]  D. Cox,et al.  Study of the current stressing in nanomanipulated three-dimensional carbon nanotube structures , 2005 .

[30]  Saurabh Chopra,et al.  Selective gas detection using a carbon nanotube sensor , 2003 .

[31]  Bingqing Wei,et al.  Mechanical and electrical properties of carbon nanotube ribbons , 2002 .

[32]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[33]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.