Conservative phase-field lattice Boltzmann model for interface tracking equation.

Based on the phase-field theory, we propose a conservative lattice Boltzmann method to track the interface between two different fluids. The presented model recovers the conservative phase-field equation and conserves mass locally and globally. Two entirely different approaches are used to calculate the gradient of the phase field, which is needed in computation of the normal to the interface. One approach uses finite-difference stencils similar to many existing lattice Boltzmann models for tracking the two-phase interface, while the other one invokes central moments to calculate the gradient of the phase field without any finite differences involved. The former approach suffers from the nonlocality of the collision operator while the latter is entirely local making it highly suitable for massive parallel implementation. Several benchmark problems are carried out to assess the accuracy and stability of the proposed model.