Existence of solutions of certain nonconvex optimal control problems governed by nonlinear integral equations

Optimal control problems with nonlinear equations usually do not have a solution, i.e. an optimal control. Nevertheless, if the cost functional is uniformly concave with respect to the state, the solution may exist. Using the Balder's technique based on a Youngmeasure relaxation, Bauer's external principle and investigation of extreme Young measures; the existence is demonstrated here for optimal control processes described by nonlinear integral equations

[1]  Heinz Bauer,et al.  Minimalstellen von Funktionen und Extremalpunkte , 1958 .

[2]  L. Neustadt The existence of optimal controls in the absence of convexity conditions , 1963 .

[3]  Aaron Strauss Introduction to Optimal Control Theory , 1968 .

[4]  V. Vinokurov,et al.  Optimal Control of Processes Described by Integral Equations, III , 1969 .

[5]  J. Warga Optimal control of differential and functional equations , 1972 .

[6]  J. Lasry,et al.  Int'egrandes normales et mesures param'etr'ees en calcul des variations , 1973 .

[7]  V. Bakke,et al.  A maximum principle for an optimal control problem with integral constraints , 1974 .

[8]  Lamberto Cesari An Existence Theorem without Convexity Conditions , 1974 .

[9]  M. Krasnosel’skiǐ,et al.  Integral operators in spaces of summable functions , 1975 .

[10]  T. Angell On the optimal control of systems governed by nonlinear volterra equations , 1976 .

[11]  J. Casti,et al.  The qualitative theory of optimal processes , 1976 .

[12]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[13]  W. Schmidt Notwendige Optimalitätsbedingungen für Prozesse mit zeitvariablen Integralgleichungen in Banach-Räumen , 1980 .

[14]  W. H. Schmidt Durch Integralgleichungen beschriebene optimale Prozesse mit Nebenbedingungen in Banachräumen - notwendige Optimalitätsbedingungen , 1982 .

[15]  D. A. Carlson An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation , 1987 .

[16]  Giovanni Colombo,et al.  On a classical problem of the calculus of variations without convexity assumptions , 1990 .

[17]  C. Corduneanu,et al.  Integral equations and applications , 1991 .

[18]  On a parametric problem of the calculus of variations without convexity assumptions , 1992 .

[19]  Existence theorems in optimal control problems without convexity assumptions , 1992 .

[20]  Erik J. Balder,et al.  New Existence Results for Optimal Controls in the Absence of Convexity: the Importance of Extremality , 1994 .

[21]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[22]  Optimal Control of Nonlinear Fredholm Integral Equations , 1998 .