Experimental study on absorption characteristics of a falling film absorber with micro-scale NH3/LiNO3 liquid film

[1]  A. Sagastume,et al.  CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3 , 2021 .

[2]  Gustavo de Novaes Pires Leite,et al.  Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications , 2020, Energies.

[3]  A. Coronas,et al.  Performance characterization methods for absorption chillers applied to an NH3-LiNO3 single-stage prototype , 2020 .

[4]  X. Liang,et al.  Absorption characteristics of NH3/NASCN working pair in an adiabatic absorber with structured packing , 2020 .

[5]  Ruzhu Wang,et al.  Sorption thermal energy storage: Concept, process, applications and perspectives , 2020 .

[6]  Xiao Liang,et al.  Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps , 2019, Energy.

[7]  A.A.S. Lima,et al.  ENERGETIC ANALYSIS OF AN ABSORPTION CHILLER USING NH3/LiNO3 AS AN ALTERNATIVE WORKING FLUID , 2019, Brazilian Journal of Chemical Engineering.

[8]  A.A.S. Lima,et al.  CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid , 2019, International Journal of Refrigeration.

[9]  R. Z. Wang,et al.  Waste heat recovery of power plant with large scale serial absorption heat pumps , 2018, Energy.

[10]  H. Ghaebi,et al.  A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis , 2018, Energy.

[11]  N. L. Pierrès,et al.  Long-term solar heat storage process by absorption with the KCOOH/H2O couple: Experimental investigation , 2017 .

[12]  Yi Jiang,et al.  Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system , 2017 .

[13]  Niu Lijuan,et al.  Experimental evaluation on thermal performance of an air-cooled absorption refrigeration cycle with NH3–LiNO3 and NH3–NaSCN refrigerant solutions , 2016 .

[14]  R. Ventas,et al.  Experimental assessment of vapour adiabatic absorption into solution droplets using a full cone nozzle , 2015 .

[15]  S. Moghaddam,et al.  Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure , 2015 .

[16]  Qiqi Tian,et al.  Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions , 2014 .

[17]  Qiqi Tian,et al.  Thermodynamic analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle driven by low grade energy , 2014 .

[18]  T. K. Gogoi,et al.  Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system , 2014 .

[19]  M. Bourouis,et al.  Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber , 2014 .

[20]  A. Vernet,et al.  Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures , 2014 .

[21]  S. Moghaddam,et al.  Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofi , 2013 .

[22]  R. Ventas,et al.  Experimental evaluation of ammonia adiabatic absorption into ammonia–lithium nitrate solution using a fog jet nozzle , 2013 .

[23]  M. Venegas,et al.  Experimental assessment of ammonia adiabatic absorption into ammonia–lithium nitrate solution using a flat fan nozzle , 2011 .

[24]  K. Miyabe,et al.  Estimation of molecular diffusivity in liquid phase systems by the Wilke-Chang equation. , 2011, Journal of chromatography. A.

[25]  R. Best,et al.  Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3–LiNO3 absorption refrigeration system , 2010 .

[26]  Ahmed Bellagi,et al.  A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling , 2010 .

[27]  R. Lizarte,et al.  Evaluation of mass absorption in LiBr flat-fan sheets , 2009 .

[28]  Bijan Farhanieh,et al.  A numerical study on the absorption of water vapor into a film of aqueous LiBr falling along a vertical plate , 2009 .

[29]  R. Lizarte,et al.  Lithium bromide absorption machines: Pressure drop and mass transfer in solutions conical sheets , 2009 .

[30]  Alberto Coronas,et al.  Densities, Viscosities, and Heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate + Water Solutions between (293.15 and 353.15) K , 2008 .

[31]  A. Coronas,et al.  Vapor−Liquid Equilibrium of Ammonia + Lithium Nitrate + Water and Ammonia + Lithium Nitrate Solutions from (293.15 to 353.15) K , 2007 .

[32]  William M. Worek,et al.  Adiabatic water absorption properties of an aqueous absorbent at very low pressures in a spray absorber , 2006 .

[33]  M. Izquierdo,et al.  Spray absorbers in absorption systems using lithium nitrate–ammonia solution , 2005 .

[34]  Avi Levy,et al.  Numerical investigation of a diffusion absorption refrigeration cycle , 2005 .

[35]  M. Izquierdo,et al.  Heat and mass transfer during absorption of ammonia vapour by LiNO3–NH3 solution droplets , 2004 .

[36]  M. Venegas,et al.  Heat and mass transfer in LiNO 3-NH 3 spray absorption system , 2003 .

[37]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[38]  W. Miller,et al.  The Correlation of Simultaneous Heat and Mass Transfer Experimental Data for Aqueous Lithium Bromide Vertical Falling Film Absorption , 2001 .

[39]  Y. Yang,et al.  Transient heat and mass transfer in a drop experiencing absorption with internal circulation , 1998 .

[40]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .