서포트 벡터 머신을 이용한 실시간 얼굴 학습 방법

근래 패턴인식 분야에 서포트벡터머신(Support Vector Machine)이 많이 사용되어지고 있다. 서포트벡터머신이 전통적인 패턴인식 방법론에 비해 우수한 성능을 보이고 있지만, 적은 클래스의 숫자, 문자 인식과는 달리 클래스의 수가 많고, 고정되어있지 않은 얼굴인식에서는 새로운 클래스가 등록될때마다 학습을 반복해야 한다. 그러나, 서포트벡터의 특성상 학습시의 계산의 복접성 때문에 실시간 학습은 사실상 불가능하다. 이에 이 논문에서는 서포트벡터머신을 이용한 실시간 얼굴인식 시스템에서의 빠른 학습방법을 제안했다. 이 시스템은 다중 클래스 인식방법 중 일대다(One Per Class)방법을 채택했으며, 캠브리지(Cambridge) ORL 얼굴 데이터를 임의적로 11개의 실험 데이터 셋으로 변형한 후 실험 및 평가해 본 결과 빠른 학습능력을 보임과 동시에 인식률에서도 별 차이가 없는 것을 확인할 수 있었다.