Simulation-based optimization algorithms with applications to dynamic spectrum access

Wireless systems operating on the unlicensed part of the radio spectrum (e.g. WiFi and their evolutions) must share a (potentially large) number of frequency bands or channels in a decentralized manner. This task is complicated by fading and interference, i.e., the throughput achieved on each link depends on the quality and the level of congestion of the selected channel. In this paper, we propose and analyze decentralized protocols that aim at achieving utility-optimal allocations of spectrum resources. We first address the problem of finding an optimal static channel allocation (a classical channel assignment problem). We illustrate how optimal algorithms based on simple reversible Monte Carlo Markov Chain (MCMC) methods can be designed. We also evaluate the mixing time of these algorithms. We then consider scenarios where scheduling and channel selection algorithms operate at the same time-scale and have to be designed jointly. We formulate the corresponding optimization problem and combine CSMA protocols and MCMC methods to devise optimal decentralized scheduling and channel selection algorithms. The proposed algorithms differ from existing algorithms as they mimic centralized steepest coordinate ascent methods, yielding faster convergence.

[1]  Konstantina Papagiannaki,et al.  Measurement-Based Self Organization of Interfering 802.11 Wireless Access Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[2]  Eric Vigoda,et al.  A survey on the use of Markov chains to randomly sample colorings , 2006 .

[3]  Jean C. Walrand,et al.  Comparison of Multichannel MAC Protocols , 2008, IEEE Transactions on Mobile Computing.

[4]  Basil S. Maglaris,et al.  Throughput Analysis in Multihop CSMA Packet Radio Networks , 1987, IEEE Trans. Commun..

[5]  Jean C. Walrand,et al.  Comparison of multi-channel MAC protocols , 2005, MSWiM '05.

[6]  V. Borkar Stochastic Approximation: A Dynamical Systems Viewpoint , 2008 .

[7]  Jean C. Walrand,et al.  A Distributed CSMA Algorithm for Throughput and Utility Maximization in Wireless Networks , 2010, IEEE/ACM Transactions on Networking.

[8]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[9]  Jian Ni,et al.  Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks , 2010, INFOCOM 2010.

[10]  Edward W. Knightly,et al.  MOAR: a multi-channel opportunistic auto-rate media access protocol for ad hoc networks , 2004, First International Conference on Broadband Networks.

[11]  Alexandre Proutière,et al.  Resource Allocation over Network Dynamics without Timescale Separation , 2010, 2010 Proceedings IEEE INFOCOM.

[12]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[13]  Harold J. Kushner,et al.  Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.

[14]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[15]  A. Sinclair,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2007 .

[16]  Himanshu Gupta,et al.  Multichannel MAC Protocols for Wireless Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[17]  Fabio Martinelli,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2004, SODA '04.

[18]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .