On Representation and Analysis of Crisp and Fuzzy Information Systems

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single Ɛ -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the Ɛ -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

[1]  Wojciech Ziarko,et al.  Variable Precision Extension of Rough Sets , 1996, Fundam. Informaticae.

[2]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[3]  Jerzy Soldek,et al.  Artificial intelligence and security in computing systems , 2003 .

[4]  Roman Słowiński,et al.  Generalized Decision Algorithms, Rough Inference Rules, and Flow Graphs , 2002, Rough Sets and Current Trends in Computing.

[5]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..

[6]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[7]  Salvatore Greco,et al.  Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets , 2005, RSFDGrC.

[8]  Lech Polkowski,et al.  Toward Rough Set Foundations. Mereological Approach , 2004, Rough Sets and Current Trends in Computing.

[9]  Salvatore Greco,et al.  Bayesian Confirmation Measures within Rough Set Approach , 2004, Rough Sets and Current Trends in Computing.

[10]  Andrzej Skowron,et al.  Transactions on Rough Sets III , 2005, Trans. Rough Sets.

[11]  Jesús Manuel Fernández Salido,et al.  Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations , 2003, Fuzzy Sets Syst..

[12]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[13]  Ramón Fuentes-González,et al.  Inclusion grade and fuzzy implication operators , 2000, Fuzzy Sets Syst..

[14]  Cristian S. Calude,et al.  Finite Versus Infinite: Contributions to an Eternal Dilemma , 2000 .

[15]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[16]  Alicja Mieszkowicz-Rolka,et al.  Variable precision rough sets , 2003 .

[17]  Chris Cornelis,et al.  Sinha-Dougherty approach to the fuzzification of set inclusion revisited , 2003, Fuzzy Sets Syst..

[18]  Dominik Slezak,et al.  Variable Precision Bayesian Rough Set Model , 2003, RSFDGrC.

[19]  Zdzislaw Pawlak,et al.  Flow Graphs and Data Mining , 2005, Trans. Rough Sets.

[20]  Dominik Slezak,et al.  Rough Sets and Bayes Factor , 2005, Trans. Rough Sets.

[21]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[22]  Zdzislaw Pawlak,et al.  Rough Sets and Flow Graphs , 2005, RSFDGrC.

[23]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[24]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[25]  Zdzisław Pawlak,et al.  Decision Algorithms, Bayes’ Theorem and Flow Graphs , 2003 .

[26]  Shyi-Ming Chen,et al.  A comparison of similarity measures of fuzzy values , 1995 .

[27]  Bernard De Baets,et al.  On rational cardinality-based inclusion measures , 2002, Fuzzy Sets Syst..

[28]  Wojciech Ziarko,et al.  Probabilistic Rough Sets , 2005, RSFDGrC.

[29]  Yiyu Yao,et al.  Rough Approximations under Level Fuzzy Sets , 2004, Rough Sets and Current Trends in Computing.

[30]  Salvatore Greco,et al.  Rough Set Processing of Vague Information Using Fuzzy Similarity Relations , 2000, Finite Versus Infinite.

[31]  Masahiro Inuiguchi Generalizations of Rough Sets: From Crisp to Fuzzy Cases , 2004, Rough Sets and Current Trends in Computing.

[32]  Akira Nakamura,et al.  Applications of Fuzzy-Rough Classifications to Logics , 1992, Intelligent Decision Support.

[33]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[34]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[35]  Paul C. Rhodes,et al.  Essentials of Fuzzy Modelling and Control , 1995 .

[36]  Zdzislaw Pawlak,et al.  A Treatise on Rough Sets , 2005, Trans. Rough Sets.

[37]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[38]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[39]  L. Kohout,et al.  FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS , 1980 .

[40]  Alicja Mieszkowicz-Rolka,et al.  Variable Precision Fuzzy Rough Sets Model in the Analysis of Process Data , 2005, RSFDGrC.