High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.
暂无分享,去创建一个
Oleksandr Voznyy | Edward H Sargent | Sjoerd Hoogland | Zhenyu Yang | Mengxia Liu | Xinzheng Lan | F. P. García de Arquer | Zhenyu Yang | O. Voznyy | E. Sargent | S. Hoogland | Fengjia Fan | Xinzheng Lan | Jin Young Kim | L. K. Jagadamma | A. Ip | Alexander H. Ip | Pongsakorn Kanjanaboos | F Pelayo García de Arquer | Alexander H Ip | Fengjia Fan | P. Kanjanaboos | Mengxia Liu | Gi-Hwan Kim | Lethy Krishnan Jagadamma | Yung Jin Yoon | Abdullah Saud Abbas | Abdullah S Abbas | Gi-Hwan Kim
[1] Aram Amassian,et al. Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.
[2] Gregory D. Scholes,et al. Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .
[3] N. Anderson,et al. Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1H and 31P NMR Spectroscopy , 2013 .
[4] Udo Bach,et al. Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices , 2000 .
[5] Aram Amassian,et al. Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.
[6] G. Konstantatos,et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.
[7] Edward H. Sargent,et al. Materials interface engineering for solution-processed photovoltaics , 2012, Nature.
[8] Michael D. McGehee,et al. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .
[9] Edward H. Sargent. Colloidal quantum dot solar cells , 2012 .
[10] A. L. da Rosa,et al. On the stabilization mechanisms of organic functional groups on ZnO surfaces. , 2012, Physical chemistry chemical physics : PCCP.
[11] William R. Salaneck,et al. Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .
[12] Illan J. Kramer,et al. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.
[13] Sang Il Seok,et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.
[14] Oleksandr Voznyy,et al. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot‐To‐Dot Surface Passivation , 2015, Advanced materials.
[15] N. H. Moreira,et al. Functionalization of ZnO surfaces with organic molecules , 2012, OPTO.
[16] Oleksandr Voznyy,et al. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. , 2015, ACS nano.
[17] Edward H. Sargent,et al. Inverted Colloidal Quantum Dot Solar Cells , 2014, Advanced materials.
[18] M. Burgelman,et al. Advanced electrical simulation of thin film solar cells , 2013 .
[19] Ratan Debnath,et al. Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.
[20] Marc Burgelman,et al. Modeling polycrystalline semiconductor solar cells , 2000 .
[21] D. Ginger,et al. Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide , 2013 .
[22] Prashant V. Kamat,et al. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .
[23] A Paul Alivisatos,et al. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.
[24] A. Heeger,et al. An Organic Surface Modifier to Produce a High Work Function Transparent Electrode for High Performance Polymer Solar Cells , 2015, Advanced materials.
[25] Jonathan S. Owen,et al. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.
[26] Moungi G. Bawendi,et al. Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.
[27] Aram Amassian,et al. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers , 2014 .
[28] G. Whitesides,et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.
[29] S. Hecht,et al. Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self‐Assembled Monolayers , 2014 .
[30] N. Tekin,et al. Polarizabilities and dipole moments of benzaldehyde, benzoic acid and oxalic acid in polar and nonpolar solvents , 2004 .