Energetics of global ocean tides from Geosat altimetry

The authors' global ocean tide maps derived from Geosat altimetry are here improved in quality and coverage; they compare favorably with ground truth data at about the same rms level as Schwiderski's models, slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm Platzman's resonant mode at 28.5±0.1 hours with an apparent Q of about 4. Driving energy enters dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models. Estimates of Q factors based on potential energy (approximately 8 for daily tides and 13 for half-daily tides) agree reasonably well with hydrodynamic models.

[1]  M. E. Parke O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1 , 1982 .

[2]  K. Lambeck,et al.  The Earth's Variable Rotation: Bibliography , 1980 .

[3]  P. Swarztrauber On the Spectral Approximation of Discrete Scalar and Vector Functions on the Sphere , 1979 .

[4]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[5]  R. Ray,et al.  Radial deformation of the earth by oceanic tidal loading , 1989 .

[6]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[7]  J. Proudman The Condition that a Long‐Period Tide shall follow the Equilibrium‐Law , 1960 .

[8]  David E. Smith,et al.  Observed tidal braking in the earth/moon/sun system , 1988 .

[9]  C. Garrett Tidal Resonance in the Bay of Fundy and Gulf of Maine , 1972, Nature.

[10]  E. W. Schwiderski,et al.  Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2 , 1983 .

[11]  G. Platzman Planetary energy balance for tidal dissipation , 1984 .

[12]  D. Webb Tides and tidal energy , 1982 .

[13]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[14]  Joseph V. Hajnal,et al.  Phase saddles and dislocations in two-dimensional waves such as the tides , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  R. A. Heath Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans , 1981 .

[16]  M. E. Parke,et al.  M2, S2, K1 models of the global ocean tide , 1979 .

[17]  Richard D. Ray,et al.  Oceanic tides from Geosat altimetry , 1990 .

[18]  J. Zschau Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides , 1978 .

[19]  J. Zschau Tidal friction in the solid Earth: constraints from the Chandler wobble period. , 1986 .

[20]  D. Cartwright,et al.  Observations of the Mf ocean tide from Geosat altimetry , 1990 .

[21]  R. Reynolds,et al.  An orthogonalized convolution method of tide prediction , 1975 .

[22]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .

[23]  D. Cartwright,et al.  New estimates of oceanic tidal energy dissipation from satellite altimetry , 1989 .

[24]  G. Platzman Normal Modes of the World Ocean. Part IV: Synthesis of Diurnal and Semidiurnal Tides , 1984 .

[25]  Richard D. Ray,et al.  Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry , 1991 .

[26]  A. Brenner,et al.  A preliminary estimate of geoid‐induced variations in repeat orbit satellite altimeter observations , 1990 .

[27]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[28]  Paul Schureman,et al.  Manual of harmonic analysis and prediction of tides / by Paul Schureman. , 2019 .

[29]  Chester J. Koblinsky,et al.  On the sea-state bias of the Geosat altimeter , 1991 .

[30]  C. Pekeris,et al.  Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  M. Cheng,et al.  Long-period perturbations in Starlette orbit and tide solution , 1990 .

[32]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[33]  G. Platzman Normal Modes of the World Ocean. Part III: A Procedure for Tidal Synthesis , 1984 .

[34]  Bruce J. Haines,et al.  A summary of precise orbit computation for the Geosat Exact Repeat Mission , 1989 .

[35]  B. Haurwitz,et al.  The diurnal and semidiurnal barometric oscillations global distribution and annual variation , 1973 .

[36]  W. Zahel Mathematical modelling of global interaction between ocean tides and earth tides , 1980 .

[37]  Kurt Lambeck,et al.  Geophysical geodesy : the slow deformations of the earth Lambeck. , 1988 .

[38]  J. Huthnance Simple models for Atlantic diurnal tides , 1983 .