Energetics of global ocean tides from Geosat altimetry
暂无分享,去创建一个
[1] M. E. Parke. O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1 , 1982 .
[2] K. Lambeck,et al. The Earth's Variable Rotation: Bibliography , 1980 .
[3] P. Swarztrauber. On the Spectral Approximation of Discrete Scalar and Vector Functions on the Sphere , 1979 .
[4] John E. Dennis,et al. An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.
[5] R. Ray,et al. Radial deformation of the earth by oceanic tidal loading , 1989 .
[6] W. Eddy,et al. The GEM-T2 Gravitational Model , 1989 .
[7] J. Proudman. The Condition that a Long‐Period Tide shall follow the Equilibrium‐Law , 1960 .
[8] David E. Smith,et al. Observed tidal braking in the earth/moon/sun system , 1988 .
[9] C. Garrett. Tidal Resonance in the Bay of Fundy and Gulf of Maine , 1972, Nature.
[10] E. W. Schwiderski,et al. Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2 , 1983 .
[11] G. Platzman. Planetary energy balance for tidal dissipation , 1984 .
[12] D. Webb. Tides and tidal energy , 1982 .
[13] D. E. Cartwright,et al. Corrected Tables of Tidal Harmonics , 1973 .
[14] Joseph V. Hajnal,et al. Phase saddles and dislocations in two-dimensional waves such as the tides , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[15] R. A. Heath. Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans , 1981 .
[16] M. E. Parke,et al. M2, S2, K1 models of the global ocean tide , 1979 .
[17] Richard D. Ray,et al. Oceanic tides from Geosat altimetry , 1990 .
[18] J. Zschau. Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides , 1978 .
[19] J. Zschau. Tidal friction in the solid Earth: constraints from the Chandler wobble period. , 1986 .
[20] D. Cartwright,et al. Observations of the Mf ocean tide from Geosat altimetry , 1990 .
[21] R. Reynolds,et al. An orthogonalized convolution method of tide prediction , 1975 .
[22] M. Hendershott,et al. The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .
[23] D. Cartwright,et al. New estimates of oceanic tidal energy dissipation from satellite altimetry , 1989 .
[24] G. Platzman. Normal Modes of the World Ocean. Part IV: Synthesis of Diurnal and Semidiurnal Tides , 1984 .
[25] Richard D. Ray,et al. Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry , 1991 .
[26] A. Brenner,et al. A preliminary estimate of geoid‐induced variations in repeat orbit satellite altimeter observations , 1990 .
[27] W. Farrell. Deformation of the Earth by surface loads , 1972 .
[28] Paul Schureman,et al. Manual of harmonic analysis and prediction of tides / by Paul Schureman. , 2019 .
[29] Chester J. Koblinsky,et al. On the sea-state bias of the Geosat altimeter , 1991 .
[30] C. Pekeris,et al. Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[31] M. Cheng,et al. Long-period perturbations in Starlette orbit and tide solution , 1990 .
[32] Olivier Francis,et al. Global charts of ocean tide loading effects , 1990 .
[33] G. Platzman. Normal Modes of the World Ocean. Part III: A Procedure for Tidal Synthesis , 1984 .
[34] Bruce J. Haines,et al. A summary of precise orbit computation for the Geosat Exact Repeat Mission , 1989 .
[35] B. Haurwitz,et al. The diurnal and semidiurnal barometric oscillations global distribution and annual variation , 1973 .
[36] W. Zahel. Mathematical modelling of global interaction between ocean tides and earth tides , 1980 .
[37] Kurt Lambeck,et al. Geophysical geodesy : the slow deformations of the earth Lambeck. , 1988 .
[38] J. Huthnance. Simple models for Atlantic diurnal tides , 1983 .