III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

[1]  Mark A Arnold,et al.  Near-Infrared Microspectroscopic Analysis of Rat Skin Tissue Heterogeneity in Relation to Noninvasive Glucose Sensing , 2009, Journal of diabetes science and technology.

[2]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[3]  Swetha Kamlapurkar,et al.  Silicon photonic on-chip trace-gas spectroscopy of methane , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[4]  D. Knoll,et al.  High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. , 2015, Optics express.

[5]  Chao Li,et al.  Review of Silicon Photonics Foundry Efforts , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[7]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[8]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[9]  J. Bauwelinck,et al.  III-V-on-Silicon Photonic Devices for Optical Communication and Sensing , 2015 .

[10]  Kristijonas Vizbaras,et al.  High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range , 2015 .

[11]  Hongtao Lin,et al.  Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[12]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[13]  Jerry R. Meyer,et al.  Semiconductor optical amplifiers at 2.0‐µm wavelength on silicon , 2017 .

[14]  Sunao Torii,et al.  On-Chip Optical Interconnect , 2009, Proceedings of the IEEE.

[15]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[16]  Hongtao Lin,et al.  Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. , 2014, ACS nano.

[17]  Peter Fuchs,et al.  DFB Lasers Between 760 nm and 16 μm for Sensing Applications , 2010, Sensors.

[18]  A. Andrejew,et al.  InP-Based Type-II Quantum-Well Lasers and LEDs , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  G Roelkens,et al.  III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range. , 2016, Optics express.

[20]  Ray T. Chen,et al.  Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. , 2012, Optics letters.

[21]  Jacob B Khurgin,et al.  Trace gas absorption spectroscopy using functionalized microring resonators. , 2014, Optics letters.

[22]  Gunther Roelkens,et al.  2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. , 2015, Optics express.

[23]  Markus Ortsiefer,et al.  Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm , 2007 .

[24]  Pao Tai Lin,et al.  On-chip mid-infrared gas detection using chalcogenide glass waveguide , 2016 .

[25]  Mathieu Carras,et al.  Multi-gas sensing with quantum cascade laser array in the mid-infrared region , 2017 .

[26]  Zeger Hens,et al.  Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. , 2012, Optics express.

[27]  John Bowers,et al.  Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. , 2015, Optics letters.

[28]  Markus-Christian Amann,et al.  InP-based type-II heterostructure lasers for wavelengths up to 2.7 μm , 2015, Photonics West - Optoelectronic Materials and Devices.

[29]  D. Thomson,et al.  Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[31]  Andre Delage,et al.  Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip , 2016, IEEE Photonics Technology Letters.

[32]  G. Scamarcio,et al.  Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. , 2012, Optics letters.

[33]  W. Jin,et al.  Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range , 2015, Nature Communications.

[34]  Gunther Roelkens,et al.  Heterogeneously integrated III–V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region , 2016 .

[35]  Laurent Cognet,et al.  Photothermal microscopy: optical detection of small absorbers in scattering environments , 2014, Journal of microscopy.

[36]  Jerry R. Meyer,et al.  Heterogeneous Integration for Mid-infrared Silicon Photonics , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Abraham J. Qavi,et al.  Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. , 2013, Analytical chemistry.

[38]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Andrea Di Falco,et al.  Slotted Photonic Crystal Sensors , 2013, Sensors.

[40]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[41]  Michal Lipson,et al.  Low-loss air-clad suspended silicon platform for mid-infrared photonics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[42]  Boris Mizaikoff,et al.  Waveguide-enhanced mid-infrared chem/bio sensors. , 2013, Chemical Society reviews.

[43]  David J. Thomson,et al.  High-speed detection at two micrometres with monolithic silicon photodiodes , 2015, Nature Photonics.

[44]  Ciyuan Qiu,et al.  Suspended Si ring resonator for mid-IR application. , 2013, Optics letters.

[45]  I Molina-Fernández,et al.  Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. , 2016, Optics express.

[46]  F. H. Peters,et al.  InP-Based Active and Passive Components for Communication Systems at 2 μm , 2015, Journal of Lightwave Technology.

[47]  M. Lipson,et al.  On-chip gas detection in silicon optical microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[48]  A. Vizbaras,et al.  Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers. , 2016, Optics express.

[49]  R Baets,et al.  Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. , 2014, Biomedical optics express.

[50]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[51]  Pao Tai Lin,et al.  Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. , 2014, Nano letters.

[52]  G. Mashanovich,et al.  Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm. , 2013, Optics express.

[53]  Siegfried Janz,et al.  Planar waveguide spatial heterodyne spectrometer , 2007, Photonics North.

[54]  B. Mroziewicz External cavity wavelength tunable semiconductor lasers - a review , 2008 .

[55]  L. Vivien,et al.  Handbook of Silicon Photonics , 2013 .

[56]  W. Petrich MID-INFRARED AND RAMAN SPECTROSCOPY FOR MEDICAL DIAGNOSTICS , 2001 .

[57]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[58]  Claire F. Gmachl,et al.  Mid-infrared quantum cascade lasers , 2012, Nature Photonics.

[59]  Swetha Kamlapurkar,et al.  Methane absorption spectroscopy on a silicon photonic chip , 2017 .

[60]  W S Rabinovich,et al.  Micromechanical photothermal spectroscopy of trace gases using functionalized polymers. , 2012, Optics letters.

[61]  Gunther Roelkens,et al.  Broad wavelength coverage 2.3 µm III-V-on-silicon DFB laser array , 2017 .

[62]  Gunther Roelkens,et al.  III-V/silicon photonic integrated circuits for spectroscopic sensing in the 2μm wavelength range , 2018, OPTO.

[63]  Kazumi Wada,et al.  Mid-infrared integrated photonics on silicon: a perspective , 2017 .

[64]  Nicole Propst,et al.  Handbook Of Distributed Feedback Laser Diodes , 2016 .

[65]  Gunther Roelkens,et al.  On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators , 2016 .

[66]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[67]  Laurent Cerutti,et al.  Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications. , 2015, Optics express.

[68]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[69]  Pao Tai Lin,et al.  Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. , 2013, Optics letters.

[70]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[71]  Frank K. Tittel,et al.  Quartz-Enhanced Photoacoustic Spectroscopy: A Review , 2014, Sensors.

[72]  Muhammad Muneeb,et al.  High resolution silicon-on-insulator mid-infrared spectrometers operating at 3.3 μm , 2017, 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[73]  Randall H Goldsmith,et al.  Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. , 2014, The journal of physical chemistry letters.

[74]  Peter Geiser,et al.  New Opportunities in Mid-Infrared Emission Control , 2015, Sensors.

[75]  William W. Bewley,et al.  Quantum cascade laser on silicon , 2016 .

[76]  Gunther Roelkens,et al.  III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. , 2016, Optics express.

[77]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[78]  Markus-Christian Amann,et al.  InP-based 2.8–3.5 μm resonant-cavity light emitting diodes based on type-II transitions in GaInAs/GaAsSb heterostructures , 2012 .

[79]  Michal Lipson,et al.  Low-loss silicon platform for broadband mid-infrared photonics , 2017, 1703.03517.

[80]  J. B. Rodriguez,et al.  Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. , 2013, Optics express.

[81]  R. Baets,et al.  On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement , 2013, Biomedical optics express.

[82]  Guo-Qiang Lo,et al.  Silicon photonic platforms for mid-infrared applications [Invited] , 2017 .

[83]  Gunther Roelkens,et al.  2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. , 2016, Optics express.

[84]  David J. Thomson,et al.  Silicon photonic devices and platforms for the mid-infrared , 2013 .

[85]  G. Roelkens,et al.  High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared , 2012, IEEE Photonics Technology Letters.

[86]  Chengfang Li,et al.  1.55μmGe islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror , 2004 .