Online learning of low dimensional strategies for high-level push recovery in bipedal humanoid robots

Bipedal humanoid robots will fall under unforeseen perturbations without active stabilization. Humans use dynamic full body behaviors in response to perturbations, and recent bipedal robot controllers for balancing are based upon human biomechanical responses. However these controllers rely on simplified physical models and accurate state information, making them less effective on physical robots in uncertain environments. In our previous work, we have proposed a hierarchical control architecture that learns from repeated trials to switch between low-level biomechanically-motivated strategies in response to perturbations. However in practice, it is hard to learn a complex strategy from limited number of trials available with physical robots. In this work, we focus on the very problem of efficiently learning the high-level push recovery strategy, using simulated models of the robot with different levels of abstraction, and finally the physical robot. From the state trajectory information generated using different models and a physical robot, we find a common low dimensional strategy for high level push recovery, which can be effectively learned in an online fashion from a small number of experimental trials on a physical robot. This learning approach is evaluated in physics-based simulations as well as on a small humanoid robot. Our results demonstrate how well this method stabilizes the robot during walking and whole body manipulation tasks.

[1]  Jun-Ho Oh,et al.  Stabilization of a hopping humanoid robot for a push , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[2]  Byoung-Tak Zhang,et al.  Online learning of a full body push recovery controller for omnidirectional walking , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[3]  Byoung-Tak Zhang,et al.  Active stabilization of a humanoid robot for impact motions with unknown reaction forces , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Benjamin J. Stephens,et al.  Humanoid push recovery , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[5]  Kazuhito Yokoi,et al.  Combining suppression of the disturbance and reactive stepping for recovering balance , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[7]  Byoung-Tak Zhang,et al.  Learning full body push recovery control for small humanoid robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004, ArXiv.

[9]  Sergey V. Drakunov,et al.  Capture Point: A Step toward Humanoid Push Recovery , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[10]  Hajime Asama,et al.  Gait pattern generation and stabilization for humanoid robot based on coupled oscillators , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Ambarish Goswami,et al.  A Biomechanically Motivated Two-Phase Strategy for Biped Upright Balance Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  S. Kajita,et al.  Experimental study of biped dynamic walking , 1996 .

[13]  David Gouaillier,et al.  Omni-directional closed-loop walk for NAO , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[14]  Imad H. Elhajj,et al.  A hybrid ankle/hip preemptive falling scheme for humanoid robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  Andreas G. Hofmann Robust execution of bipedal walking tasks from biomechanical principles , 2006 .