Continuous Multiclass Labeling Approaches and Algorithms

We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the original combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity—one can be used to tightly relax any metric interaction potential, while the other covers only Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetic and real-world images. By combining the method with an improved rounding technique for nonstandard potentials, we were able to routinely recover integral solutions within $1\%$-$5\%$ of the global optimum for the combinatorial image labeling problem.

[1]  Horst Bischof,et al.  A Variational Model for Interactive Shape Prior Segmentation and Real-Time Tracking , 2009, SSVM.

[2]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[3]  A. Goldstein Convex programming in Hilbert space , 1964 .

[4]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[5]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[6]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[7]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[8]  Naihua Xiu,et al.  Convergence of the Gradient Projection Method for Generalized Convex Minimization , 2000, Comput. Optim. Appl..

[9]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[10]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[11]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[12]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[14]  Anders Heyden,et al.  Convex multi-region segmentation on manifolds , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[16]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[17]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  L. Vese,et al.  A projected gradient algorithm for color image decomposition , 2008 .

[19]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[21]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[22]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[23]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[25]  T. Stephenson Image analysis , 1992, Nature.

[26]  Shiqian Ma,et al.  Fast Multiple-Splitting Algorithms for Convex Optimization , 2009, SIAM J. Optim..

[27]  许树声 ESTIMATION OF THE CONVERGENCE RATE OF DYKSTRA’S CYCLIC PROJECTIONS ALGORITHM IN POLYHEDRAL CASE , 2000 .

[28]  Andrea Braides Γ-convergence for beginners , 2002 .

[29]  M. Niethammer,et al.  Continuous maximal flows and Wulff shapes: Application to MRFs , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[31]  Christoph Schnörr,et al.  Convex optimization for multi-class image labeling with a novel family of total variation based regularizers , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Benjamin Berkels,et al.  An Unconstrained Multiphase Thresholding Approach for Image Segmentation , 2009, SSVM.

[33]  Antonin Chambolle,et al.  On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.

[34]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[35]  Charles R. Johnson,et al.  Connections between the real positive semidefinite and distance matrix completion problems , 1995 .

[36]  Daniel Cremers,et al.  Continuous Energy Minimization Via Repeated Binary Fusion , 2008, ECCV.

[37]  C. Michelot A finite algorithm for finding the projection of a point onto the canonical simplex of ∝n , 1986 .

[38]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[39]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[40]  Daniel Cremers,et al.  Space-Varying Color Distributions for Interactive Multiregion Segmentation: Discrete versus Continuous Approaches , 2011, EMMCVPR.

[41]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[42]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[43]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[44]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[45]  Christoph Schnörr,et al.  Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem , 2012, Journal of Mathematical Imaging and Vision.

[46]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[47]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, International Journal of Computer Vision.

[48]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[50]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[51]  Hugues Talbot,et al.  Globally minimal surfaces by continuous maximal flows , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[53]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[54]  Vladimir Kolmogorov,et al.  What metrics can be approximated by geo-cuts, or global optimization of length/area and flux , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[55]  B. M. Fulk MATH , 1992 .

[56]  Simon Setzer Splitting methods in image processing , 2009 .

[57]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[58]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[59]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[60]  Christoph Schnörr,et al.  Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision , 2010, ECCV.

[61]  Carl Olsson,et al.  Global Optimization in Computer Vision: Convexity, Cuts and Approximation Algorithms , 2009 .

[62]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[63]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[64]  Nikos Komodakis,et al.  Approximate Labeling via Graph Cuts Based on Linear Programming , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Xu Shusheng,et al.  Estimation of the convergence rate of Dykstra’s cyclic projections algorithm in polyhedral case , 2000 .

[66]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[67]  Jan-Michael Frahm,et al.  Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps , 2008, VMV.

[68]  W. Fleming,et al.  An integral formula for total gradient variation , 1960 .

[69]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[70]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[71]  Jing Yuan,et al.  Convex Multi-class Image Labeling by Simplex-Constrained Total Variation , 2009, SSVM.

[72]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[73]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[74]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[75]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[76]  Gilbert Strang,et al.  Maximal flow through a domain , 1983, Math. Program..

[77]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[78]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[79]  L. Popov A modification of the Arrow-Hurwicz method for search of saddle points , 1980 .

[80]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[81]  A. Fiacco A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of R " , 2009 .

[82]  Xue-Cheng Tai,et al.  Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Multiphase Image Segmentation , 2009, SSVM.