A shear locking free isoparametric three-node triangular finite element for moderately-thick and thin plates

A shear locking free isoparametric three-node triangular plate bending element, KEYA, is developed. Reissner/Mindlin theory that incorporates transverse shear deformation is assumed in the plate formulation. Numerical results include patch tests, convergence of transverse displacement and stress resultants, and variations of them for various parametric effects on cantilever, simply supported and clamped plates.

[1]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[2]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[3]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[4]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[5]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[6]  A.W.M. Kok,et al.  A shear locking free six-node mindlin plate bending element , 1990 .

[7]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[8]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[9]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[10]  O. C. Zienkiewicz,et al.  Three‐field mixed approximation and the plate bending problem , 1987 .

[11]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[12]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .

[13]  B. S. Dhillon,et al.  Triangular Thick Plate Bending Elements , 1971 .

[14]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[15]  R. H. Gallagher,et al.  A triangular shear-flexible finite element for moderately thick laminated composite plates , 1983 .

[16]  V. L. Salerno,et al.  Effect of Shear Deformations on the Bending of Rectangular Plates , 1960 .

[17]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[18]  Nicholas J. Hoff,et al.  Buckling of Axially Compressed Circular Cylindrical Shells at Stresses Smaller Than the Classical Critical Value , 1965 .

[19]  Robert L. Taylor,et al.  A triangular element based on Reissner‐Mindlin plate theory , 1990 .

[20]  O. C. Zienkiewicz,et al.  A refined higher-order C° plate bending element , 1982 .

[21]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[22]  Tarun Kant,et al.  Numerical analysis of thick plates , 1982 .

[23]  A. K. Rao,et al.  Flexure of Thick Rectangular Plates , 1973 .