35 59 v 1 [ gr-q c ] 2 2 Se p 20 07 Implementation of standard testbeds for numerical relativity
暂无分享,去创建一个
Y. Zlochower | S. Husa | B. Szilágyi | I. Hinder | J. Winicour | D. Pollney | C. Lechner | M. Babiuc | E. Schnetter | N. Dorband
[1] J. Pullin. Editorial note to R. Arnowitt, S. Deser, C. W. Misner The dynamics of general relativity , 2008 .
[2] S. Husa,et al. Implementation of standard testbeds for numerical relativity , 2007, 0709.3559.
[3] Lawrence E. Kidder,et al. Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.
[4] O. Rinne. Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.
[5] C. Gundlach,et al. Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.
[6] H. Kreiss,et al. Finite difference schemes for second order systems describing black holes , 2006, gr-qc/0604010.
[7] B. Szilágyi,et al. Harmonic Initial-Boundary Evolution in General Relativity , 2006, gr-qc/0601039.
[8] S. Husa,et al. Hyperboloidal data and evolution , 2005, gr-qc/0512033.
[9] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[10] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.
[11] C. Gundlach,et al. Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.
[12] Ian Hinder,et al. Numerical stability for finite difference approximations of Einstein's equations , 2005, J. Comput. Phys..
[13] Frans Pretorius,et al. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[14] Oscar Reula,et al. Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.
[15] Y. Zlochower,et al. Accurate black hole evolutions by fourth-order numerical relativity , 2005, gr-qc/0505055.
[16] H. Kreiss,et al. Modeling the black hole excision problem , 2004, gr-qc/0412101.
[17] J. Frauendiener,et al. Algebraic stability analysis of constraint propagation , 2004, gr-qc/0410100.
[18] D. Post,et al. Computational Science Demands a New Paradigm , 2005 .
[19] O. Sarbach,et al. On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.
[20] R. Arnowitt,et al. Republication of: The dynamics of general relativity , 2004, gr-qc/0405109.
[21] B. Szilágyi,et al. Some mathematical problems in numerical relativity , 2004, gr-qc/0404092.
[22] Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.
[23] Oscar A. Reula,et al. Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.
[24] C. Gundlach,et al. Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.
[25] S. Husa,et al. Kranc : a Mathematica application to generate numerical codes for tensorial evolution equations , 2004 .
[26] Scott H. Hawley,et al. Towards standard testbeds for numerical relativity , 2003, gr-qc/0305023.
[27] Hans Ringstrom,et al. On a wave map equation arising in general relativity , 2003, gr-qc/0303062.
[28] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[29] Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.
[30] L. M. González-Romero,et al. Current Trends in Relativistic Astrophysics , 2003 .
[31] B. Berger. Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes , 2002, gr-qc/0207035.
[32] O. Sarbach,et al. Convergence and stability in numerical relativity , 2002, gr-qc/0207018.
[33] O. Sarbach,et al. Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations , 2002, gr-qc/0205086.
[34] D. Garfinkle. Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.
[35] E. Seidel,et al. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.
[36] H. Friedrich,et al. The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .
[37] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[38] Keith Watt,et al. Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.
[39] S. Frittelli,et al. Note on the propagation of the constraints in standard (3+1) general relativity , 1997 .
[40] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[41] W. M. Lioen,et al. Test set for IVP solvers , 1996 .
[42] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[43] B. Strand. Summation by parts for finite difference approximations for d/dx , 1994 .
[44] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[45] J. York,et al. Kinematics and dynamics of general relativity , 1979 .
[46] Heinz-Otto Kreiss,et al. Methods for the approximate solution of time dependent problems , 1973 .
[47] Jacques E. Romain,et al. Gravitation: An Introduction to Current Research , 1963 .
[48] Susan G. Hahn,et al. The two-body problem in geometrodynamics , 1964 .