35 59 v 1 [ gr-q c ] 2 2 Se p 20 07 Implementation of standard testbeds for numerical relativity

We sharpen our discussion of the design and implementation of the initial round of testbeds for numerical relativity which was presented in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications and add theoretical insight. PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.Nr, 98.80.Cq

[1]  J. Pullin Editorial note to R. Arnowitt, S. Deser, C. W. Misner The dynamics of general relativity , 2008 .

[2]  S. Husa,et al.  Implementation of standard testbeds for numerical relativity , 2007, 0709.3559.

[3]  Lawrence E. Kidder,et al.  Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.

[4]  O. Rinne Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.

[5]  C. Gundlach,et al.  Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.

[6]  H. Kreiss,et al.  Finite difference schemes for second order systems describing black holes , 2006, gr-qc/0604010.

[7]  B. Szilágyi,et al.  Harmonic Initial-Boundary Evolution in General Relativity , 2006, gr-qc/0601039.

[8]  S. Husa,et al.  Hyperboloidal data and evolution , 2005, gr-qc/0512033.

[9]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[10]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[11]  C. Gundlach,et al.  Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.

[12]  Ian Hinder,et al.  Numerical stability for finite difference approximations of Einstein's equations , 2005, J. Comput. Phys..

[13]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[14]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[15]  Y. Zlochower,et al.  Accurate black hole evolutions by fourth-order numerical relativity , 2005, gr-qc/0505055.

[16]  H. Kreiss,et al.  Modeling the black hole excision problem , 2004, gr-qc/0412101.

[17]  J. Frauendiener,et al.  Algebraic stability analysis of constraint propagation , 2004, gr-qc/0410100.

[18]  D. Post,et al.  Computational Science Demands a New Paradigm , 2005 .

[19]  O. Sarbach,et al.  On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.

[20]  R. Arnowitt,et al.  Republication of: The dynamics of general relativity , 2004, gr-qc/0405109.

[21]  B. Szilágyi,et al.  Some mathematical problems in numerical relativity , 2004, gr-qc/0404092.

[22]  Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.

[23]  Oscar A. Reula,et al.  Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.

[24]  C. Gundlach,et al.  Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.

[25]  S. Husa,et al.  Kranc : a Mathematica application to generate numerical codes for tensorial evolution equations , 2004 .

[26]  Scott H. Hawley,et al.  Towards standard testbeds for numerical relativity , 2003, gr-qc/0305023.

[27]  Hans Ringstrom,et al.  On a wave map equation arising in general relativity , 2003, gr-qc/0303062.

[28]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[29]  Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.

[30]  L. M. González-Romero,et al.  Current Trends in Relativistic Astrophysics , 2003 .

[31]  B. Berger Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes , 2002, gr-qc/0207035.

[32]  O. Sarbach,et al.  Convergence and stability in numerical relativity , 2002, gr-qc/0207018.

[33]  O. Sarbach,et al.  Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations , 2002, gr-qc/0205086.

[34]  D. Garfinkle Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[35]  E. Seidel,et al.  Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.

[36]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[37]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[38]  Keith Watt,et al.  Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.

[39]  S. Frittelli,et al.  Note on the propagation of the constraints in standard (3+1) general relativity , 1997 .

[40]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[41]  W. M. Lioen,et al.  Test set for IVP solvers , 1996 .

[42]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[43]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[44]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[45]  J. York,et al.  Kinematics and dynamics of general relativity , 1979 .

[46]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[47]  Jacques E. Romain,et al.  Gravitation: An Introduction to Current Research , 1963 .

[48]  Susan G. Hahn,et al.  The two-body problem in geometrodynamics , 1964 .