Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes

OBJECTIVE Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10−8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10−4), improved β-cell function (P = 1.1 × 10−5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10−6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.

E. Oetjen | J. Danesh | P. Deloukas | K. Stirrups | L. Groop | M. Laakso | M. Boehnke | T. Frayling | M. Weedon | A. Dimas | C. Fox | A. Nica | J. Peden | E. Ingelsson | A. Jackson | A. Swift | B. Voight | V. Lyssenko | P. Almgren | B. Isomaa | T. Tuomi | P. Froguel | A. Syvänen | H. Ongen | J. Meigs | N. Wareham | J. Dupuis | M. Horikoshi | S. Gustafsson | A. Hamsten | I. Prokopenko | A. Silveira | P. Eriksson | C. Östenson | D. Saleheen | A. Gloyn | J. Kooner | I. Barroso | M. Travers | S. Kanoni | G. Dedoussis | A. Manning | J. Luan | A. Stančáková | J. Kuusisto | C. Langenberg | J. Chambers | N. Bouatia-Naji | F. Pattou | S. Parish | L. Folkersen | R. Strawbridge | E. Eury | T. Forsén | B. Sennblad | C. Osmond | P. Johnson | F. Payne | E. Wheeler | E. Kajantie | E. Ferrannini | E. Ahlqvist | U. Seedorf | T. Kuulasmaa | K. Makrilakis | J. Hopewell | E. Oetjen | J. Petrie | E. Dennison | J. Kerr-Conte | H. Gu | M. Franzosi | T. Hooft | J. Taneera | M. Martínez-Larrad | M. Serrano-Ríos | D. Barker | B. Zethelius | M. Mannila | A. Sayer | Mark Walker | Adam Barker | K. Jameson | Chris Cooper | L. Pascoe | A. Mälarstig | J. Öhrvik | F. Turrini | J. Eriksson | Jenny Casey Eriksson | J. Florez | C. Zabena | Lars Lind | E. Dermitzakis | D. Rybin | Jian | A. Luan | Ferdinand M. van | -. ManuelSerrano | Ríos | L. Lind | R. Clarke | Daniel R. Barnes | Han Chen | H. Watkins | R. Watanabe | Narisu Narisu | A. Goel | R. Loos | Weijia Xie | M. McCarthy | F. Collins | Weijia Xie | Emmanouil T. Dermitzakis | Leif Groop | Alisa K Manning | Jalal Taneera | Denis Rybin | Per Eriksson | A. Jackson | John R. Petrie | Han Chen | Fabiola Turrini | David J. P. Barker | Elaine M. Dennison | Maria Nastase Mannila | Clive Osmond | Kathy Stirrups | Ferdinand M. van 't Hooft | J. Chambers | N. Wareham

[1]  N. Mehta Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. , 2011, Circulation. Cardiovascular genetics.

[2]  Thomas W. Mühleisen,et al.  Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease , 2011, Nature Genetics.

[3]  Mark I. McCarthy,et al.  A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease , 2011, Nature Genetics.

[4]  Andrew P Morris,et al.  Meta-analysis of sex-specific genome-wide association studies , 2010, Genetic epidemiology.

[5]  J. Florez,et al.  The genetics of type 2 diabetes: what have we learned from GWAS? , 2010, Annals of the New York Academy of Sciences.

[6]  Yusuke Nakamura,et al.  A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.

[7]  Christian Gieger,et al.  Edinburgh Research Explorer Common variants at 10 genomic loci influence hemoglobin A(C) levels via glycemic and nonglycemic pathways , 2010 .

[8]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[9]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[10]  L. Padyukov Faculty Opinions recommendation of Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. , 2010 .

[11]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[12]  Simon C. Potter,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[13]  T. Assimes,et al.  Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans , 2010, Diabetes.

[14]  Nicholette D. Palmer,et al.  Candidate loci for insulin sensitivity and disposition index from a genome-wide association analysis of Hispanic participants in the Insulin Resistance Atherosclerosis (IRAS) Family Study , 2010, Diabetologia.

[15]  B. Stefanovic,et al.  Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. , 2010, Journal of molecular biology.

[16]  M. Loder,et al.  Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants , 2009, Diabetes.

[17]  Nicholette D. Palmer,et al.  A genome-wide association scan for acute insulin response to glucose in Hispanic-Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS FS) , 2009, Diabetologia.

[18]  C. Fox,et al.  TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study , 2009, Diabetologia.

[19]  M. Loder,et al.  TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells , 2009, Diabetes.

[20]  M. Martínez-Larrad,et al.  Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population , 2008, Diabetologia.

[21]  T. Hansen,et al.  Common nonsynonymous variants in PCSK1 confer risk of obesity , 2008, Nature Genetics.

[22]  A. Haupt,et al.  Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion , 2008, Diabetologia.

[23]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[24]  S. O’Rahilly,et al.  Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. , 2007, The Journal of clinical endocrinology and metabolism.

[25]  Inês Barroso,et al.  TCF7L2 Polymorphisms Modulate Proinsulin Levels and β-Cell Function in a British Europid Population , 2007, Diabetes.

[26]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[27]  Alberto Riva,et al.  BMC Bioinformatics BioMed Central Database A SNP-centric database for the investigation of the human genome , 2004 .

[28]  C. Berne,et al.  Proinsulin Is an Independent Predictor of Coronary Heart Disease: Report From a 27-Year Follow-Up Study , 2002, Circulation.

[29]  R. Bergman,et al.  Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. , 2002, Diabetes.

[30]  P. Elwood,et al.  Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study , 2002, Diabetologia.

[31]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[32]  Warren C. Lathe,et al.  Prediction of deleterious human alleles. , 2001, Human molecular genetics.

[33]  C. Tsai-Morris,et al.  Regulation of steroidogenic enzymes and a novel testicular RNA helicase , 2001, The Journal of Steroid Biochemistry and Molecular Biology.

[34]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[35]  G. Hallmans,et al.  High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population. , 1999, Metabolism: clinical and experimental.

[36]  M. Matsuda,et al.  Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. , 1999, Diabetes care.

[37]  N. Day,et al.  Fasting proinsulin concentrations predict the development of type 2 diabetes. , 1999, Diabetes care.

[38]  L. Orci,et al.  Incomplete Processing of Proinsulin to Insulin Accompanied by Elevation of Des-31,32 Proinsulin Intermediates in Islets of Mice Lacking Active PC2* , 1998, The Journal of Biological Chemistry.

[39]  R. Schwartz,et al.  Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. , 1998, The Journal of clinical endocrinology and metabolism.

[40]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[41]  M. T. Brennan,et al.  Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. , 1967, The Journal of clinical investigation.

[42]  Richard Barnett Diabetes , 1904, The Lancet.

[43]  Tanya M. Teslovich,et al.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .

[44]  Inês Barroso,et al.  Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.

[45]  N. Stefan,et al.  Open Access Research Article Association of Obesity Risk Snps in Pcsk1 with Insulin Sensitivity and Proinsulin Conversion , 2022 .