Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
暂无分享,去创建一个
E. Oetjen | J. Danesh | P. Deloukas | K. Stirrups | L. Groop | M. Laakso | M. Boehnke | T. Frayling | M. Weedon | A. Dimas | C. Fox | A. Nica | J. Peden | E. Ingelsson | A. Jackson | A. Swift | B. Voight | V. Lyssenko | P. Almgren | B. Isomaa | T. Tuomi | P. Froguel | A. Syvänen | H. Ongen | J. Meigs | N. Wareham | J. Dupuis | M. Horikoshi | S. Gustafsson | A. Hamsten | I. Prokopenko | A. Silveira | P. Eriksson | C. Östenson | D. Saleheen | A. Gloyn | J. Kooner | I. Barroso | M. Travers | S. Kanoni | G. Dedoussis | A. Manning | J. Luan | A. Stančáková | J. Kuusisto | C. Langenberg | J. Chambers | N. Bouatia-Naji | F. Pattou | S. Parish | L. Folkersen | R. Strawbridge | E. Eury | T. Forsén | B. Sennblad | C. Osmond | P. Johnson | F. Payne | E. Wheeler | E. Kajantie | E. Ferrannini | E. Ahlqvist | U. Seedorf | T. Kuulasmaa | K. Makrilakis | J. Hopewell | E. Oetjen | J. Petrie | E. Dennison | J. Kerr-Conte | H. Gu | M. Franzosi | T. Hooft | J. Taneera | M. Martínez-Larrad | M. Serrano-Ríos | D. Barker | B. Zethelius | M. Mannila | A. Sayer | Mark Walker | Adam Barker | K. Jameson | Chris Cooper | L. Pascoe | A. Mälarstig | J. Öhrvik | F. Turrini | J. Eriksson | Jenny Casey Eriksson | J. Florez | C. Zabena | Lars Lind | E. Dermitzakis | D. Rybin | Jian | A. Luan | Ferdinand M. van | -. ManuelSerrano | Ríos | L. Lind | R. Clarke | Daniel R. Barnes | Han Chen | H. Watkins | R. Watanabe | Narisu Narisu | A. Goel | R. Loos | Weijia Xie | M. McCarthy | F. Collins | Weijia Xie | Emmanouil T. Dermitzakis | Leif Groop | Alisa K Manning | Jalal Taneera | Denis Rybin | Per Eriksson | A. Jackson | John R. Petrie | Han Chen | Fabiola Turrini | David J. P. Barker | Elaine M. Dennison | Maria Nastase Mannila | Clive Osmond | Kathy Stirrups | Ferdinand M. van 't Hooft | J. Chambers | N. Wareham
[1] N. Mehta. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. , 2011, Circulation. Cardiovascular genetics.
[2] Thomas W. Mühleisen,et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease , 2011, Nature Genetics.
[3] Mark I. McCarthy,et al. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease , 2011, Nature Genetics.
[4] Andrew P Morris,et al. Meta-analysis of sex-specific genome-wide association studies , 2010, Genetic epidemiology.
[5] J. Florez,et al. The genetics of type 2 diabetes: what have we learned from GWAS? , 2010, Annals of the New York Academy of Sciences.
[6] Yusuke Nakamura,et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.
[7] Christian Gieger,et al. Edinburgh Research Explorer Common variants at 10 genomic loci influence hemoglobin A(C) levels via glycemic and nonglycemic pathways , 2010 .
[8] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[9] Ayellet V. Segrè,et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.
[10] L. Padyukov. Faculty Opinions recommendation of Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. , 2010 .
[11] Reedik Mägi,et al. GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.
[12] Simon C. Potter,et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.
[13] T. Assimes,et al. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans , 2010, Diabetes.
[14] Nicholette D. Palmer,et al. Candidate loci for insulin sensitivity and disposition index from a genome-wide association analysis of Hispanic participants in the Insulin Resistance Atherosclerosis (IRAS) Family Study , 2010, Diabetologia.
[15] B. Stefanovic,et al. Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. , 2010, Journal of molecular biology.
[16] M. Loder,et al. Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants , 2009, Diabetes.
[17] Nicholette D. Palmer,et al. A genome-wide association scan for acute insulin response to glucose in Hispanic-Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS FS) , 2009, Diabetologia.
[18] C. Fox,et al. TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study , 2009, Diabetologia.
[19] M. Loder,et al. TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells , 2009, Diabetes.
[20] M. Martínez-Larrad,et al. Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population , 2008, Diabetologia.
[21] T. Hansen,et al. Common nonsynonymous variants in PCSK1 confer risk of obesity , 2008, Nature Genetics.
[22] A. Haupt,et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion , 2008, Diabetologia.
[23] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[24] S. O’Rahilly,et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. , 2007, The Journal of clinical endocrinology and metabolism.
[25] Inês Barroso,et al. TCF7L2 Polymorphisms Modulate Proinsulin Levels and β-Cell Function in a British Europid Population , 2007, Diabetes.
[26] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[27] Alberto Riva,et al. BMC Bioinformatics BioMed Central Database A SNP-centric database for the investigation of the human genome , 2004 .
[28] C. Berne,et al. Proinsulin Is an Independent Predictor of Coronary Heart Disease: Report From a 27-Year Follow-Up Study , 2002, Circulation.
[29] R. Bergman,et al. Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. , 2002, Diabetes.
[30] P. Elwood,et al. Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study , 2002, Diabetologia.
[31] S. Henikoff,et al. Predicting deleterious amino acid substitutions. , 2001, Genome research.
[32] Warren C. Lathe,et al. Prediction of deleterious human alleles. , 2001, Human molecular genetics.
[33] C. Tsai-Morris,et al. Regulation of steroidogenic enzymes and a novel testicular RNA helicase , 2001, The Journal of Steroid Biochemistry and Molecular Biology.
[34] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[35] G. Hallmans,et al. High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population. , 1999, Metabolism: clinical and experimental.
[36] M. Matsuda,et al. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. , 1999, Diabetes care.
[37] N. Day,et al. Fasting proinsulin concentrations predict the development of type 2 diabetes. , 1999, Diabetes care.
[38] L. Orci,et al. Incomplete Processing of Proinsulin to Insulin Accompanied by Elevation of Des-31,32 Proinsulin Intermediates in Islets of Mice Lacking Active PC2* , 1998, The Journal of Biological Chemistry.
[39] R. Schwartz,et al. Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. , 1998, The Journal of clinical endocrinology and metabolism.
[40] R. Turner,et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.
[41] M. T. Brennan,et al. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. , 1967, The Journal of clinical investigation.
[42] Richard Barnett. Diabetes , 1904, The Lancet.
[43] Tanya M. Teslovich,et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .
[44] Inês Barroso,et al. Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.
[45] N. Stefan,et al. Open Access Research Article Association of Obesity Risk Snps in Pcsk1 with Insulin Sensitivity and Proinsulin Conversion , 2022 .