Capturing Multivariate Spatial Dependence: Model, Estimate and then Predict

Physical processes rarely occur in isolation, rather they influence and interact with one another. Thus, there is great benefit in modeling potential dependence between both spatial locations and different processes. It is the interaction between these two dependencies that is the focus of Genton and Kleiber's paper under discussion. We see the problem of ensuring that any multivariate spatial covariance matrix is nonnegative definite as important, but we also see it as a means to an end. That "end" is solving the scientific problem of predicting a multivariate field. [arXiv:1507.08017].

[1]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[2]  Yasuo Amemiya,et al.  Modeling and prediction for multivariate spatial factor analysis , 2003 .

[3]  J. Andrew Royle,et al.  A Hierarchical Spatial Model for Constructing Wind Fields from Scatterometer Data in the Labrador Sea , 1999 .

[4]  Jonathan R. Bradley,et al.  Multivariate spatio-temporal models for high-dimensional areal data with application to Longitudinal Employer-Household Dynamics , 2015, 1503.00982.

[5]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[6]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[7]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[8]  Jonathan R. Bradley,et al.  Mixed Effects Modeling for Areal Data that Exhibit Multivariate-Spatio-Temporal Dependencies , 2014, 1407.7479.

[9]  Dianne Cook Dynamic Graphics , 2009, Encyclopedia of Database Systems.

[10]  N. Cressie,et al.  Multivariable spatial prediction , 1994 .

[11]  Christopher K. Wikle,et al.  Low-Rank Representations for Spatial Processes , 2010 .

[12]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .

[13]  Noel A Cressie,et al.  Long-Lead Prediction of Pacific SSTs via Bayesian Dynamic Modeling , 2000 .

[14]  Yasuo Amemiya,et al.  Latent Variable Analysis of Multivariate Spatial Data , 2002 .

[15]  Jennifer A Hoeting,et al.  Model selection for geostatistical models. , 2006, Ecological applications : a publication of the Ecological Society of America.

[16]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[17]  Noel A Cressie,et al.  The Variance-Based Cross-Variogram: You Can Add Apples and Oranges , 1998 .

[18]  Emily L. Kang,et al.  Bayesian Hierarchical ANOVA of Regional Climate-Change Projections from NARCCAP Phase II , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[19]  Noel A Cressie,et al.  Dynamic graphics for exploring spatial dependence in multivariate spatial data , 1997 .

[20]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[21]  Noel A Cressie,et al.  Multivariate Intrinsic Random Functions for Cokriging , 2009 .

[22]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[23]  D. Gamerman,et al.  Spatial dynamic factor analysis , 2008 .

[24]  S. Ghosh,et al.  Performance of information criteria for spatial models , 2009, Journal of statistical computation and simulation.

[25]  Yasuo Amemiya,et al.  Generalized Shifted-Factor Analysis Method for Multivariate Geo-Referenced Data , 2001 .

[26]  T. Subba Rao,et al.  Statistics for Spatial Data, Revised Edition, by Noel Cressie. Published by Wiley Classics Library, John Wiley, 2015. Total number of pages: 928. ISBN: 978-1-119-11518-2 , 2016 .

[27]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[28]  Hans R. Künsch,et al.  Generalized cross-covariances and their estimation , 1997 .

[29]  Bo Li,et al.  An approach to modeling asymmetric multivariate spatial covariance structures , 2011, J. Multivar. Anal..