Photometric visual servoing for omnidirectional cameras

Abstract2D visual servoing consists in using data provided by a vision sensor for controlling the motions of a dynamic system. Most of visual servoing approaches has relied on the geometric features that have to be tracked and matched in the image acquired by the camera. Recent works have highlighted the interest of taking into account the photometric information of the entire image. This approach was tackled with images of perspective cameras. We propose, in this paper, to extend this technique to central cameras. This generalization allows to apply this kind of method to catadioptric cameras and wide field of view cameras. Several experiments have been successfully done with a fisheye camera in order to control a 6 degrees of freedom robot and with a catadioptric camera for a mobile robot navigation task.

[1]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[2]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[3]  Hiroshi Murase,et al.  Subspace methods for robot vision , 1996, IEEE Trans. Robotics Autom..

[4]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[5]  Helder Araújo,et al.  Issues on the geometry of central catadioptric image formation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Radu Horaud,et al.  Visual Servoing/Tracking Using Central Catadioptric Images , 2002, ISER.

[7]  Robert E. Mahony,et al.  Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach , 2002, IEEE Trans. Robotics Autom..

[8]  François Chaumette,et al.  Image moments: a general and useful set of features for visual servoing , 2004, IEEE Transactions on Robotics.

[9]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[11]  Koichiro Deguchi,et al.  A Direct Interpretation of Dynamic Images with Camera and Object Motions for Vision Guided Robot Control , 2000, International Journal of Computer Vision.

[12]  Xianghua Ying,et al.  Can We Consider Central Catadioptric Cameras and Fisheye Cameras within a Unified Imaging Model , 2004, ECCV.

[13]  Federico Tombari,et al.  ZNCC-based template matching using bounded partial correlation , 2005, Pattern Recognit. Lett..

[14]  Éric Marchand,et al.  ViSP for visual servoing: a generic software platform with a wide class of robot control skills , 2005, IEEE Robotics & Automation Magazine.

[15]  Éric Marchand,et al.  Feature tracking for visual servoing purposes , 2005, Robotics Auton. Syst..

[16]  Michel Dhome,et al.  Monocular Vision for Mobile Robot Localization and Autonomous Navigation , 2007, International Journal of Computer Vision.

[17]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[18]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[19]  Selim Benhimane,et al.  Homography-based 2D Visual Tracking and Servoing , 2007, Int. J. Robotics Res..

[20]  Gregory D. Hager,et al.  Kernel-based visual servoing , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Philippe Martinet,et al.  A generic fisheye camera model for robotic applications , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Domenico Prattichizzo,et al.  Image-based Visual Servoing with Central Catadioptric Cameras , 2008, Int. J. Robotics Res..

[23]  Pascal Vasseur,et al.  Omnidirectional image processing using geodesic metric , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[24]  Peter I. Corke,et al.  Generic decoupled image-based visual servoing for cameras obeying the unified projection model , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Philippe Martinet,et al.  Autonomous Navigation of Vehicles from a Visual Memory Using a Generic Camera Model , 2009, IEEE Transactions on Intelligent Transportation Systems.

[26]  Zhichao Chen,et al.  Qualitative Vision-Based Path Following , 2009, IEEE Transactions on Robotics.

[27]  Andrea Cherubini,et al.  Coarsely calibrated visual servoing of a mobile robot using a catadioptric vision system , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Sinisa Segvic,et al.  A mapping and localization framework for scalable appearance-based navigation , 2009, Comput. Vis. Image Underst..

[29]  Éric Marchand,et al.  Omnidirectional photometric visual servoing , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Graziano Chesi,et al.  Visual Servoing via Advanced Numerical Methods , 2010 .

[31]  Michel Dhome,et al.  Flexible extrinsic calibration of non-overlapping cameras using a planar mirror: Application to vision-based robotics , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Gonzalo López-Nicolás,et al.  Omnidirectional visual control of mobile robots based on the 1D trifocal tensor , 2010, Robotics Auton. Syst..

[33]  Patrick Rives,et al.  Dense visual mapping of large scale environments for real-time localisation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Christophe Collewet,et al.  Photometric Visual Servoing , 2011, IEEE Transactions on Robotics.

[35]  Éric Marchand,et al.  Mutual Information-Based Visual Servoing , 2011, IEEE Transactions on Robotics.

[36]  Gonzalo López-Nicolás,et al.  Angle-based homing from a reference image set using the 1D trifocal tensor , 2013, Auton. Robots.