A system of high-dimensional, efficient, long-cycle and portable uniform random number generators

We propose a system of multiple recursive generators of modulus <i>p</i> and order <i>k</i> where all nonzero coefficients of the recurrence are equal. The advantage of this property is that a single multiplication is needed to compute the recurrence, so the generator would run faster than the general case. For <i>p</i> = 2<sup>31</sup> − 1, the most popular modulus used, we provide tables of specific parameter values yielding maximum period for recurrence of order <i>k</i> = 102 and 120. For <i>p</i> = 2<sup>31</sup> − 55719 and <i>k</i> = 1511, we have found generators with a period length approximately 10<sup>14100.5</sup>.

[1]  Pei-Chi Wu,et al.  Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.

[2]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[3]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[4]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[5]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[6]  Pierre L'Ecuyer,et al.  Linear congruential generators of order K>1 , 1988, WSC '88.

[7]  N. Zierler Linear Recurring Sequences , 1959 .

[8]  Pierre L'Ecuyer,et al.  Beware of linear congruential generators with multipliers of the form a = ±2q ±2r , 1999, TOMS.

[9]  A. Grube,et al.  Mehrfach rekursiv‐erzeugte Pseudo‐Zufallszahlen , 1973 .

[10]  Lih-Yuan Deng,et al.  Generation of Uniform Variates from Several Nearly Uniformly Distributed Variables , 1990 .

[11]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[12]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[13]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[14]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[15]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[16]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[17]  W. H. Payne,et al.  Coding the Lehmer pseudo-random number generator , 1969, CACM.

[18]  Lih-Yuan Deng,et al.  STATISTICAL JUSTIFICATION OF COMBINATION GENERATORS , 1997 .

[19]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[20]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .