Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

The Schottky barrier for carrier injection into 2D semiconductors can be effectively tuned by using 2D metals. Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.

[1]  Zhixian Zhou,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[2]  E. Antončík,et al.  On the theory of surface states , 1961 .

[3]  Yuanyue Liu,et al.  Air Passivation of Chalcogen Vacancies in Two-Dimensional Semiconductors. , 2015, Angewandte Chemie.

[4]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[5]  Li Yang,et al.  Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides , 2013, 1306.0620.

[6]  R. T. Tung Formation of an electric dipole at metal-semiconductor interfaces , 2001 .

[7]  He Tian,et al.  Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions , 2014, Scientific Reports.

[8]  Steven G. Louie,et al.  Ionicity and the theory of Schottky barriers , 1977 .

[9]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[10]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[11]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[12]  S. Louie,et al.  Self-Consistent Pseudopotential Calculation for a Metal-Semiconductor Interface , 1975 .

[13]  C. Ho,et al.  Transport properties in semiconducting NbS2 nanoflakes , 2014 .

[14]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[15]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[16]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[17]  E. Reed,et al.  Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers , 2014, Nature Communications.

[18]  T. Reusch,et al.  Origin of Schottky barriers in gold contacts on GaAs110. , 2004, Physical review letters.

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[21]  Multi-terminal electrical transport measurements of molybdenum disulphide using van der Waals heterostructure device platform , 2014, 1412.5977.

[22]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[23]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  Y. Obeng,et al.  Influence of metal-MoS2 interface on MoS2 transistor performance: comparison of Ag and Ti contacts. , 2014, ACS applied materials & interfaces.

[26]  F. Peeters,et al.  Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures , 2014 .

[27]  J. Robertson,et al.  3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. , 2015, ACS applied materials & interfaces.

[28]  S. Blügel,et al.  Local density of states at metal-semiconductor interfaces: an atomic scale study. , 2015, Physical review letters.

[29]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[30]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[31]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[32]  Suhuai Wei,et al.  Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2 , 2010 .

[33]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[34]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[35]  F. Peeters,et al.  Engineering electronic properties of metal–MoSe2 interfaces using self-assembled monolayers , 2014 .

[36]  Daniel J. Connelly,et al.  Fermi-level depinning for low-barrier Schottky source/drain transistors , 2006 .

[37]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[38]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[39]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[40]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[41]  G. Brocks,et al.  Controlling the Schottky barrier at MoS 2/metal contacts by inserting a BN monolayer , 2015, 1501.02130.

[42]  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature communications.

[43]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[44]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[45]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[46]  Kwang S. Kim,et al.  Tuning the graphene work function by electric field effect. , 2009, Nano letters.

[47]  K. Banerjee,et al.  2D crystal semiconductors: Intimate contacts. , 2014, Nature materials.

[48]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[49]  Hao Wu,et al.  Toward barrier free contact to molybdenum disulfide using graphene electrodes. , 2015, Nano letters.

[50]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[51]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[52]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[53]  R. T. Tung The physics and chemistry of the Schottky barrier height , 2014 .

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  Tomonori Nishimura,et al.  Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface , 2007 .

[56]  Qing Hua Wang,et al.  Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. , 2014, ACS nano.