Various New Expressions for Subresultants and Their Applications

This article is devoted to presenting new expressions for Subresultant Polynomials, written in terms of some minors of matrices different from the Sylvester matrix. Moreover, via these expressions, we provide new proofs for formulas which associate the Subresultant polynomials and the roots of the two polynomials. By one hand, we present a new proof for the formula introduced by J. J. Sylvester in 1839, formula written in terms of a single sum over the roots. By other hand, we introduce a new expression in terms of the roots by considering the Newton basis.

[1]  S. Hou,et al.  Inversion of confluent Vandermonde matrices , 2002 .

[2]  Xiaorong Hou,et al.  Subresultants with the Bézout Matrix , 2000 .

[3]  Laureano González-Vega,et al.  Barnett's Theorems About the Greatest Common Divisor of Several Univariate Polynomials Through Bezout-like Matrices , 2002, J. Symb. Comput..

[4]  L. González-Vega An elementary proof of Barnett's theorem about the greatest common divisor of several univarlate polynomials , 1996 .

[5]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[6]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[7]  Laureano González-Vega,et al.  Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..

[8]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[9]  Alexander L. Chistov,et al.  Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic , 1985, FCT.

[10]  S. Barnett Polynomials and linear control systems , 1983 .

[11]  Joachim von zur Gathen,et al.  Subresultants revisited , 2003, Theor. Comput. Sci..

[12]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[13]  H. Bez,et al.  Computer mathematics , 1984 .

[14]  Ron Goldman,et al.  Transformations and Transitions from the Sylvester to the Bezout Resultant , 1999 .

[15]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[16]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[17]  Alain Lascoux,et al.  Double Sylvester sums for subresultants and multi-Schur functions , 2003, J. Symb. Comput..

[18]  J. Sylvester,et al.  XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure , 1853, Philosophical Transactions of the Royal Society of London.

[19]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[20]  L. González-Vega A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .

[21]  Laureano González-Vega,et al.  Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor , 2004, Int. J. Comput. Math..

[22]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[23]  Martin L. Griss Using an Efficient Sparse Minor Expansion Algorithm to Compute Polynomial Subresultants and the Greatest Common Denominator , 1978, IEEE Transactions on Computers.

[24]  Hoon Hong Subresultants Under Composition , 1997, J. Symb. Comput..

[25]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[26]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[27]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .