Various New Expressions for Subresultants and Their Applications
暂无分享,去创建一个
[1] S. Hou,et al. Inversion of confluent Vandermonde matrices , 2002 .
[2] Xiaorong Hou,et al. Subresultants with the Bézout Matrix , 2000 .
[3] Laureano González-Vega,et al. Barnett's Theorems About the Greatest Common Divisor of Several Univariate Polynomials Through Bezout-like Matrices , 2002, J. Symb. Comput..
[4] L. González-Vega. An elementary proof of Barnett's theorem about the greatest common divisor of several univarlate polynomials , 1996 .
[5] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[6] A. L. Dixon. The Eliminant of Three Quantics in two Independent Variables , 1909 .
[7] Laureano González-Vega,et al. Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..
[8] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[9] Alexander L. Chistov,et al. Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic , 1985, FCT.
[10] S. Barnett. Polynomials and linear control systems , 1983 .
[11] Joachim von zur Gathen,et al. Subresultants revisited , 2003, Theor. Comput. Sci..
[12] R. Loos. Generalized Polynomial Remainder Sequences , 1983 .
[13] H. Bez,et al. Computer mathematics , 1984 .
[14] Ron Goldman,et al. Transformations and Transitions from the Sylvester to the Bezout Resultant , 1999 .
[15] Mohab Safey El Din,et al. New Structure Theorem for Subresultants , 2000, J. Symb. Comput..
[16] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[17] Alain Lascoux,et al. Double Sylvester sums for subresultants and multi-Schur functions , 2003, J. Symb. Comput..
[18] J. Sylvester,et al. XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure , 1853, Philosophical Transactions of the Royal Society of London.
[19] F. Gantmakher,et al. Théorie des matrices , 1990 .
[20] L. González-Vega. A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .
[21] Laureano González-Vega,et al. Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor , 2004, Int. J. Comput. Math..
[22] M'hammed El Kahoui,et al. An elementary approach to subresultants theory , 2003, J. Symb. Comput..
[23] Martin L. Griss. Using an Efficient Sparse Minor Expansion Algorithm to Compute Polynomial Subresultants and the Greatest Common Denominator , 1978, IEEE Transactions on Computers.
[24] Hoon Hong. Subresultants Under Composition , 1997, J. Symb. Comput..
[25] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[26] V. Pan,et al. Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.
[27] Maurice Mignotte,et al. Mathematics for computer algebra , 1991 .