Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia

In this paper, the Persistent Scatterer InSAR (PS-InSAR) technique is applied in order to investigate the ground deformation in and around two geothermal areas in West Java, Indonesia. Two time-series of ALOS PALSAR and Sentinel-1A acquisitions, covering the period from 2007 to 2009 and 2015–2016, are analysed. The first case study examines the Wayang Windu geothermal zone where the PS-InSAR analysis provides an overview of the surface deformation around a geothermal reservoir. Uplift is observed around the injection wells in the area. The second example involves the use of the PS-InSAR technique over a more recent geothermal system in Patuha field. Again, a pattern of uplift was observed around the only available injection well in the area. Due to the dense vegetation coverage of the geothermal areas in West Java, the longer wavelength ALOS PALSAR data is provides better results by identifying a larger number of PS points. Additionally, experiments have been carried out to compare the resulting deformation with another example of the fluid migration process i.e. water extraction in Bandung basin. The potential of sentinel-1A and ALOS PALSR data are compared in all the experiments.

[1]  Volker Tank,et al.  New remote sensing techniques for the detection and quantification of earth surface CO2 degassing , 2008 .

[2]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[4]  Didier Massonnet,et al.  Satellite radar interferometric map of the coseismic deformation field of the M = 6.1 Eureka Valley, California Earthquake of May 17, 1993 , 1995 .

[5]  Hermann Kaufmann,et al.  Remarkable Urban Uplift in Staufen im Breisgau, Germany: Observations from TerraSAR-X InSAR and Leveling from 2008 to 2011 , 2013, Remote. Sens..

[6]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[7]  I. Bogie,et al.  THE APPLICATION OF A VOLCANIC FACIES MODEL TO AN ANDESITIC STRATOVOLCANO HOSTED GEOTHERMAL ,SYSTEM AT WAYANG WINDU, JAVA, INDONESIA , 1998 .

[8]  Irwan Gumilar,et al.  Land Subsidence in Bandung Basin and its Possible Caused Factors , 2015 .

[9]  H. Zebker,et al.  Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation , 1999 .

[10]  Freyr Sverrisson,et al.  Renewables 2014 : global status report , 2014 .

[11]  L. J. Donnelly A review of international cases of fault reactivation during mining subsidence and fluid abstraction , 2009 .

[12]  Asep Saepuloh,et al.  Identification of linear features at geothermal field based on Segment Tracing Algorithm (STA) of the ALOS PALSAR data , 2016 .

[13]  Melanie J. Leng,et al.  Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia , 2000 .

[14]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[15]  Maaike Schotanus,et al.  The Patuha geothermal system: a numerical model of a vapor-dominated system , 2013 .

[16]  Harald van der Werff,et al.  Geologic remote sensing for geothermal exploration: A review , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Elizabeth F. Littlefield,et al.  Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada , 2014 .

[18]  J. grasso,et al.  Ten years of seismic monitoring over a gas field , 1990 .

[19]  Asep Saepuloh,et al.  Identification of Surface Manifestation at Geothermal Field Using SAR Dual Orbit Data , 2016 .

[20]  Ian K. G. Boothroyd,et al.  Ecological characteristics and management of geothermal systems of the Taupo Volcanic Zone, New Zealand , 2009 .

[21]  Kazhong Deng,et al.  Large-scale deformation monitoring in mining area by D-InSAR and 3D laser scanning technology integration , 2013 .

[22]  Merry C. Wisnandary,et al.  Overview of the Wayang Windu geothermal field, West Java, Indonesia , 2008 .

[23]  Warren Hamilton Tectonics of the Indonesian region , 1979 .

[24]  Tsehaie Woldai,et al.  Active fault segments as potential earthquake sources: inferences from integrated geophysical mapping of the Magadi fault system, Southern Kenya Rift , 2010 .

[25]  Didier Massonnet,et al.  Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry , 1997 .

[26]  Howard A. Zebker,et al.  Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry , 2001 .

[27]  Ning Zhang,et al.  Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis - A case study in Tengchong, China , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[28]  W. Calvin,et al.  Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA , 2007 .

[29]  Bénédicte Fruneau,et al.  Contributions of InSAR to study active tectonics of Taiwan , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[30]  Stuart Marsh,et al.  The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere , 2008 .

[31]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[32]  R. Stow,et al.  Detecting mining subsidence from space , 1999 .

[33]  Paul Segall,et al.  Post-earthquake ground movements correlated to pore-pressure transients , 2003, Nature.

[34]  Ramon F. Hanssen,et al.  Physical analysis of atmospheric delay signal observed in stacked radar interferometric data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[35]  Raphaël Grandin,et al.  Interferometric Processing of SLC Sentinel-1 TOPS Data , 2015 .

[36]  F. Webb,et al.  Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR C radar interferometry , 1996 .

[37]  Yasuhiro Fujimitsu,et al.  Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[38]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  Mark Coolbaugh,et al.  Mineral mapping in the Pyramid Lake basin: hydrothermal alteration, chemical precipitates and geothermal energy potential. , 2010 .

[40]  Pau Prats,et al.  Investigations on TOPS interferometry with TerraSAR-X , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[41]  Teng Wang,et al.  Repeat-Pass SAR Interferometry With Partially Coherent Targets , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Hubert Fabriol,et al.  Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry , 1999 .

[43]  Essam Heggy,et al.  InSAR Assessment of Surface Deformations in Urban Coastal Terrains Associated With Groundwater Dynamics , 2015, IEEE Transactions on Geoscience and Remote Sensing.