An Extension of Greene's Criterion for Conformally Symplectic Systems and a Partial Justification
暂无分享,去创建一个
Rafael de la Llave | Alessandra Celletti | Renato C. Calleja | Corrado Falcolini | R. Llave | A. Celletti | R. Calleja | C. Falcolini
[1] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[2] A. Celletti,et al. Periodic and quasi--periodic orbits of the dissipative standard map , 2011 .
[3] R. MacKay. Greene's residue criterion , 1992 .
[4] A. Banyaga. Some properties of locally conformal symplectic structures , 2002 .
[5] Moser stability for locally conformally symplectic structures , 2008, 0811.0621.
[6] J. Gillis,et al. Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .
[7] Sylvain Crovisier. Ensembles de torsion nulle des applications déviant la verticale , 2003 .
[8] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[9] R. Llave,et al. Cohomology equations near hyperbolic points and geometric versions of sternberg linearization theorem , 1996 .
[10] R. de la Llave,et al. Time-dependent scattering theory for ODEs and applications to reaction dynamics , 2011 .
[11] George R. Sell,et al. Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .
[12] Shlomo Sternberg,et al. Convexity properties of the moment mapping. II , 1982 .
[13] G. R. Hall. A topological version of a theorem of Mather on twist maps , 1984, Ergodic Theory and Dynamical Systems.
[14] L. Arbogast. Du calcul des dérivations , 1800 .
[15] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[16] Harold Levine,et al. Singularities of differentiable mappings , 1971 .
[17] Adam M. Fox,et al. Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps , 2012, 1205.6143.
[18] R. Llave,et al. Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .
[19] W. D. Melo,et al. ONE-DIMENSIONAL DYNAMICS , 2013 .
[20] Michael Atiyah,et al. Convexity and Commuting Hamiltonians , 1982 .
[21] Rafael de la Llave,et al. Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .
[22] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[23] R. McLachlan,et al. Conformal Hamiltonian systems , 2001 .
[24] Rafael de la Llave,et al. A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .
[25] M. Casdagli. Periodic orbits for dissipative twist maps , 1987, Ergodic Theory and Dynamical Systems.
[26] R. de la Llave,et al. The obstruction criterion for non-existence of invariant circles and renormalization , 2006 .
[27] Stathis Tompaidis,et al. Numerical Study of Invariant Sets of a Quasiperiodic Perturbation of a Symplectic Map , 1996, Exp. Math..
[28] Jordi-Lluís Figueras,et al. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.
[29] J. Moser. On the volume elements on a manifold , 1965 .
[30] R. Llave,et al. Local Behavior Near Quasi-Periodic Solutions of Conformally Symplectic Systems , 2013 .
[31] H. Rüssmann. On a new proof of Moser's twist mapping theorem , 1976 .
[32] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[33] R. Llave,et al. A rigorous partial justification of Greene's criterion , 1992 .
[34] R. Llave,et al. Singularity Theory for Non-Twist Kam Tori , 2014 .
[35] Stathis Tompaidis,et al. Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..
[36] R. Llave,et al. Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .
[37] J. Meiss. The destruction of tori in volume-preserving maps , 2011, 1103.0050.
[38] I. Vaisman. LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS , 1985 .
[40] Carlangelo Liverani,et al. Conformally Symplectic Dynamics and Symmetry of the Lyapunov Spectrum , 1998 .
[41] Morriss,et al. Proof of Lyapunov exponent pairing for systems at constant kinetic energy. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[42] W. A. Coppel. Dichotomies in Stability Theory , 1978 .
[43] T. M. Seara,et al. GEOMETRIC PROPERTIES OF THE SCATTERING MAP OF A NORMALLY HYPERBOLIC INVARIANT MANIFOLD , 2008 .
[44] A. Celletti,et al. On the break-down threshold of invariant tori in four dimensional maps , 2004 .
[45] G. Floquet,et al. Sur les équations différentielles linéaires à coefficients périodiques , 1883 .
[46] A. Celletti,et al. Quasi-Periodic Attractors in Celestial Mechanics , 2009 .
[47] N N Nekhoroshev,et al. AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .
[48] Dressler,et al. Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. , 1988, Physical review. A, General physics.
[49] Alan Weinstein,et al. Lectures on Symplectic Manifolds , 1977 .
[50] A. Celletti,et al. Breakdown of invariant attractors for the dissipative standard map. , 2010, Chaos.
[51] Yakov Pesin,et al. Lectures on Partial Hyperbolicity and Stable Ergodicity , 2004 .
[52] Helmut Rüssmann,et al. On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .
[53] T. M. Seara,et al. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of ?2} , 2000 .
[54] R. Llave,et al. A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .