Algorithms to tile the infinite grid with finite clusters

We say that a subset T of Z/sup 2/, the two dimensional infinite grid, tiles Z/sup 2/ if we can cover Z/sup 2/ with non-overlapping translates of T. No algorithm is known to decide whether a finite T/spl sube/Z/sup 2/ tiles Z/sup 2/. Here we present two algorithms, one for the case when |T| is prime, and another for the case when |T|=4. Both algorithms generalize to the case, where we replace Z/sup 2/ with all arbitrary finitely generated Abelian group. As a by-product of our results we partially settle the Periodic Tiling Conjecture raised by J. Lagarias and Y. Wang (1997), and we also get the following generalization of a theorem of L.Redei (1965): Let G be a (finite or infinite) Abelian group G with a generator set T of prime cardinality such, that 0/spl isin/T, and there is a set T'/spl sube/G with the property that for every g/spl isin/G there are unique t/spl isin/T, t'/spl isin/T' such that g=t+t'. Then T' can be replaced with a subgroup of G, that also has the above property.

[1]  R. H. Bruck A Survey of Binary Systems , 1971 .

[2]  Leonid A. Levin,et al.  Random instances of a graph coloring problem are hard , 1988, STOC '88.

[3]  Jeffrey C. Lagarias,et al.  Tiling the line with translates of one tile , 1996 .

[4]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[5]  L. Rédei,et al.  Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós , 1965 .

[6]  J. Conway,et al.  Quasiperiodic tiling in two and three dimensions , 1986 .

[7]  Robert L. Berger The undecidability of the domino problem , 1966 .

[8]  Jeffrey C. Lagarias,et al.  Spectral Sets and Factorizations of Finite Abelian Groups , 1997 .

[9]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  R. Tijdeman Number Theory: Decomposition of the integers as a direct sum of two subsets , 1995 .

[12]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[13]  Hao Wang Notes on a class of tiling problems , 1975 .

[14]  Fa Dick On the factorization of finite Abelian groups , 1953 .

[15]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[16]  Krishnaswami Alladi Number Theory: Decomposition of the integers as a direct sum of two subsets , 1995 .