Quantifying decoherence in continuous variable systems

We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some non-classicality indicators in phase space, and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wavepackets.

[1]  Walls,et al.  Quantum superpositions generated by quantum nondemolition measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[3]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[4]  Guang-Can Guo,et al.  Influence of noise on the fidelity and the entanglement fidelity of states , 1997 .

[5]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  B. S. Ham,et al.  Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime , 2003 .

[7]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[8]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[9]  H. J. Kimble,et al.  Quantum teleportation of light beams , 2003 .

[10]  Matteo G. A. Paris Entanglement and visibility at the output of a Mach-Zehnder interferometer , 1999 .

[11]  Rigged-reservoir response. II: Effects of a squeezed vacuum , 1987 .

[12]  David E. Pritchard,et al.  Atom cooling , trapping , and quantum manipulation , 1999 .

[13]  Vitali,et al.  Physical realization of an environment with squeezed quantum fluctuations via quantum-nondemolition-mediated feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[14]  Iosif Moiseevich Ryzhik,et al.  Summen-, Produkt- und Integral-Tafeln , 1963 .

[15]  P. Zoller,et al.  Photonic channels for quantum communication , 1998, Science.

[16]  Milburn,et al.  Effect of dissipation on quantum coherence. , 1985, Physical review. A, General physics.

[17]  O. Steuernagel Synthesis of Fock states via beam splitters , 1997 .

[18]  A. Holevo,et al.  Capacity of quantum Gaussian channels , 1999 .

[19]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[20]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[21]  Seth Lloyd,et al.  Minimum Rényi and Wehrl entropies at the output of bosonic channels , 2004 .

[22]  B. Garraway,et al.  Generation and preservation of coherence in dissipative quantum optical environments , 1998 .

[23]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[24]  Gerardo Adesso,et al.  Quantification and scaling of multipartite entanglement in continuous variable systems. , 2004, Physical review letters.

[25]  F. Illuminati,et al.  Extremal entanglement and mixedness in continuous variable systems , 2004, quant-ph/0402124.

[26]  Jakub S. Prauzner-Bechcicki,et al.  LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002 .

[27]  M. G. A. Paris,et al.  Purity of Gaussian states: Measurement schemes and time evolution in noisy channels , 2003 .

[28]  S. Stenholm,et al.  Rigged-reservoir response. I. General theory , 1987 .

[29]  Masashi Ban,et al.  Quantum channel of continuous variable teleportation and nonclassicality of quantum states , 2002 .

[30]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[31]  Kilin,et al.  Fock state generation by the methods of nonlinear optics. , 1995, Physical review letters.

[32]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[33]  S. Lloyd,et al.  Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.

[34]  Symplectic evolution of Wigner functions in Markovian open systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Entanglement and purity of two-mode Gaussian states in noisy channels (10 pages) , 2003, quant-ph/0310087.

[36]  T. Anhut,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1997 .

[37]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[38]  T. Hiroshima Decoherence and entanglement in two-mode squeezed vacuum states. , 2000, quant-ph/0006100.

[39]  J. Raimond,et al.  Scheme for decoherence control in microwave cavities , 2002, quant-ph/0211101.

[40]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[41]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.

[42]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[43]  Wolfgang Tittel,et al.  Practical Aspects of Quantum Cryptographic Key Distribution , 2000, Journal of Cryptology.

[44]  Barnett,et al.  Information theory, squeezing, and quantum correlations. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[45]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[46]  E. I. Duzzioni,et al.  Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of "Schrödinger cat" states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  Entanglement engineering of one-photon wave packets using a single-atom source , 1998, quant-ph/9802060.

[48]  Drummond,et al.  Three-level atom in a broadband squeezed vacuum field. I. General theory. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[49]  Muriel Medard,et al.  Quantum Information Theory , 2007 .

[50]  V. Dodonov REVIEW ARTICLE: `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years , 2002 .

[51]  Radim Filip Overlap and entanglement-witness measurements , 2002 .

[52]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[53]  B. Yurke,et al.  Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. , 1986, Physical review letters.

[54]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[55]  Vitali,et al.  Effect of feedback on the decoherence of a Schrödinger-cat state: A quantum trajectory description. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[56]  Dirk-Gunnar Welsch,et al.  Entanglement generation and degradation by passive optical devices , 2001 .

[57]  Optimized teleportation in Gaussian noisy channels , 2003, quant-ph/0309097.

[58]  H. Reck Der Ausbruchscyklus des Merapi in den Jahren 1933/34 , 1935, Naturwissenschaften.

[59]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[60]  Mciver,et al.  Optimized preparation of quantum states by conditional measurements. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms , 1999, quant-ph/9904058.

[62]  G. D’Ariano,et al.  Optical Fock-state synthesizer , 2000, quant-ph/0001065.

[63]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[64]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[65]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[66]  Kennedy,et al.  Squeezed quantum fluctuations and macroscopic quantum coherence. , 1988, Physical review. A, General physics.

[67]  Harel,et al.  Fock-state preparation from thermal cavity fields by measurements on resonant atoms. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[68]  K. B. Whaley,et al.  Deterministic optical Fock-state generation , 2002, quant-ph/0211134.

[69]  S. Gleyzes,et al.  Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. , 2003, Physical review letters.

[70]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[71]  J. Wenger,et al.  Pulsed squeezed vacuum measurements without homodyning , 2004 .

[72]  F. Illuminati,et al.  Minimum decoherence cat-like states in Gaussian noisy channels , 2003, quant-ph/0310005.

[73]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[74]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[75]  Kim,et al.  Quasiprobabilities and the nonclassicality of fields. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[76]  Barnett,et al.  Entropy as a measure of quantum optical correlation. , 1989, Physical review. A, General physics.

[77]  P. Zoller,et al.  Mimicking a squeezed bath interaction: Quantum reservoir engineering with atoms , 1997, quant-ph/9706031.

[78]  Preparation and control of a cavity-field state through an atom-driven-field interaction: Towards long-lived mesoscopic states , 2003, quant-ph/0307096.

[79]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[80]  Tombesi,et al.  Distinguishable quantum states generated via nonlinear birefringence. , 1987, Physical review letters.

[81]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[82]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[83]  Vogel,et al.  Quantum state engineering of the radiation field. , 1993, Physical review letters.

[84]  Leonski Fock states in a Kerr medium with parametric pumping. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[85]  Sudarshan,et al.  Gaussian-Wigner distributions in quantum mechanics and optics. , 1987, Physical review. A, General physics.

[86]  F. Illuminati,et al.  DECOHERENCE OF NUMBER STATES IN PHASE-SENSITIVE RESERVOIRS , 2003, quant-ph/0312055.

[87]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[88]  Ueda,et al.  Generation of the Schrödinger-cat state by continuous photodetection. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[89]  Kim,et al.  Phase-sensitive reservoir modeled by beam splitters. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[90]  S. Chaturvedi,et al.  Congruences and canonical forms for a positive matrix: Application to the Schweinler–Wigner extremum principle , 1998, math-ph/9811003.

[91]  Gerardo Adesso,et al.  Determination of continuous variable entanglement by purity measurements. , 2003, Physical review letters.

[92]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[93]  P. Marian,et al.  Squeezed states with thermal noise. II. Damping and photon counting. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[94]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[95]  J. Eisert,et al.  Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs , 2004, quant-ph/0406065.

[96]  Pointer states via Decoherence in a Quantum Measurement , 1999, quant-ph/9909005.

[97]  Nicolas J Cerf,et al.  How to measure squeezing and entanglement of Gaussian states without homodyning. , 2004, Physical review letters.

[98]  Paweł Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.