THE KEPLER CATALOG OF STELLAR FLARES

A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ∼1035 erg. The net fraction of flare stars increases with g − i color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ∼0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of −1, shallower than typical measurements for X-ray activity decay with Rossby number.

[1]  S. Sciortino,et al.  Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei , 2016, 1602.03696.

[2]  M. Pinsonneault,et al.  Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars , 2016, Nature.

[3]  David J Armstrong,et al.  The host stars of Kepler's habitable exoplanets: superflares, rotation and activity , 2015, 1511.05306.

[4]  A. Broomhall,et al.  A MULTI-PERIOD OSCILLATION IN A STELLAR SUPERFLARE , 2015, 1510.03613.

[5]  J. Hartman,et al.  PHOTOMETRIC STUDY ON STELLAR MAGNETIC ACTIVITY. I. FLARE VARIABILITY OF RED DWARF STARS IN THE OPEN CLUSTER M37 , 2015, 1510.01005.

[6]  J. Davenport The shape of M dwarf flares in Kepler light curves , 2015, Proceedings of the International Astronomical Union.

[7]  C. Henze,et al.  DISCOVERY AND VALIDATION OF Kepler-452b: A 1.6 R⨁ SUPER EARTH EXOPLANET IN THE HABITABLE ZONE OF A G2 STAR , 2015, 1507.06723.

[8]  J. Allred,et al.  A UNIFIED COMPUTATIONAL MODEL FOR SOLAR AND STELLAR FLARES , 2015, 1507.04375.

[9]  J. Davenport,et al.  DETECTING DIFFERENTIAL ROTATION AND STARSPOT EVOLUTION ON THE M DWARF GJ 1243 WITH KEPLER , 2015, 1505.01524.

[10]  H. Hudson Solar extreme events , 2015, 1504.04755.

[11]  C. Pugh,et al.  Oscillations in stellar superflares , 2015, 1504.01491.

[12]  Kazunari Shibata,et al.  Statistical properties of superflares on solar-type stars based on 1-min cadence data , 2015, Earth, Planets and Space.

[13]  Zeljko Ivezic,et al.  PERIODOGRAMS FOR MULTIBAND ASTRONOMICAL TIME SERIES , 2015, 1502.01344.

[14]  J. Fortney,et al.  Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. , 2015, Astrobiology.

[15]  W. Ip,et al.  A STUDY OF VARIABILITY IN THE FREQUENCY DISTRIBUTIONS OF THE SUPERFLARES OF G-TYPE STARS OBSERVED BY THE KEPLER MISSION , 2014 .

[16]  John C. Lurie,et al.  KEPLER FLARES III: STELLAR ACTIVITY ON GJ 1245A AND B , 2014, 1412.6109.

[17]  Leslie Hebb,et al.  KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243 , 2014, 1411.3723.

[18]  K. Poppenhaeger Stellar magnetic activity and Star-Planet Interactions (invited review) , 2014, 1411.0636.

[19]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[20]  J. Bochanski,et al.  THE FACTORY AND THE BEEHIVE. II. ACTIVITY AND ROTATION IN PRAESEPE AND THE HYADES , 2014, 1409.7603.

[21]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[22]  H. Maehara,et al.  SUPERFLARE OCCURRENCE AND ENERGIES ON G-, K-, AND M-TYPE DWARFS , 2014, 1405.1453.

[23]  J. Linsky,et al.  The ultraviolet radiation environment in the habitable zones around low-mass exoplanet host stars , 2014 .

[24]  Ž. Ivezić,et al.  The SDSS–2MASS–WISE 10-dimensional stellar colour locus , 2014, 1403.1875.

[25]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[26]  Brandon C. Kelly,et al.  FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS , 2014, 1402.5978.

[27]  G. Basri,et al.  Rotation and differential rotation of active Kepler stars , 2013, 1308.1508.

[28]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[29]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[30]  J. G. Doyle,et al.  Short-duration high-amplitude flares detected on the M dwarf star KIC 5474065 , 2013, 1306.5938.

[31]  A. Reiners,et al.  Fast and reliable method for measuring stellar differential rotation from photometric data , 2013, 1306.2176.

[32]  William J. Chaplin,et al.  Asteroseismology of Solar-Type and Red-Giant Stars , 2013, 1303.1957.

[33]  Jon M. Jenkins,et al.  MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. I. INDIVIDUAL EVENTS , 2013, 1303.0255.

[34]  B. R. Dennis,et al.  GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS , 2012, 1209.2654.

[35]  L. Balona Kepler observations of flaring in A-F type stars , 2012 .

[36]  C. J. Schrijver,et al.  Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records , 2012, 1206.4889.

[37]  S. Hawley,et al.  MOST Observations of the Flare Star AD Leo , 2012, 1206.5019.

[38]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[39]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[40]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[41]  L. Walkowicz,et al.  WHITE-LIGHT FLARES ON COOL STARS IN THE KEPLER QUARTER 1 DATA , 2010, 1008.0853.

[42]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[43]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[44]  M. Martic,et al.  THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS , 2010, 1001.0506.

[45]  B. Carter,et al.  The chromospheric emission of solar-type stars in the young open clusters IC 2391 and IC 2602 , 2009, 0907.0286.

[46]  A. West,et al.  A FIRST LOOK AT ROTATION IN INACTIVE LATE-TYPE M DWARFS , 2008, 0812.1220.

[47]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[48]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[49]  Andrew A. West,et al.  Stellar SEDs from 0.3 to 2.5 μm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS , 2007, 0707.4473.

[50]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[51]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[52]  I. Reid,et al.  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field Planetary Camera 2 , 2002, astro-ph/0211470.

[53]  V. Kashyap,et al.  Flare Heating in Stellar Coronae , 2002, astro-ph/0208546.

[54]  E. S. Parsamyan Determination of the age of stellar aggregates and flare stars of the galactic field , 1995 .

[55]  B. Pettersen A review of stellar flares and their characteristics , 1989 .

[56]  Miron Livny,et al.  Condor-a hunter of idle workstations , 1988, [1988] Proceedings. The 8th International Conference on Distributed.

[57]  A. Skumanich Some evidence on the evolution of the flare mechanism in dwarf stars , 1986 .

[58]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[59]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[60]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[61]  G. Basri Rossby or not Rossby , 1986 .

[62]  Sallie L. Baliunas,et al.  Cool stars, stellar systems and the Sun , 1984 .

[63]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[64]  T. Moffett,et al.  UV Ceti stars: statistical analysis of observational data. , 1976 .

[65]  E. S. Parsamyan Dependence of the absolute magnitudes (energies) of flares on the age of the cluster in which the flare stars occur , 1976 .